首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
卵砾石河道广泛存在于山区河流中,在卵砾石河床近底层的水流流速低于上方流速,速度剖面出现拐点,类似于自由剪切流动,传统的指数型和对数型水流阻力公式计算误差偏大。将自由剪切流理论类比到山区卵砾石河道,并考虑山区河流特殊流态、流场和剪切力的影响,引入雷诺数(Re)、弗劳德数(Fr)和摩阻流速利用水槽数据进一步修正了该类水流阻力公式。筛选位于意大利南部的亚平宁山脉140条山区河流野外数据对新公式进行验证,并检验对比了已发表的多个山区河流阻力公式。结果表明:修正后的水流阻力公式Nash-Sutcliffe效率指数最接近1、均方根误差最小、相对误差最小。自由剪切流动的类比是从湍流结构角度推导河道水流阻力,能更好地阐释特殊水流结构,进而提高计算精度。  相似文献   

2.
沙波迎流面流速分布公式   总被引:1,自引:0,他引:1       下载免费PDF全文
为进一步揭示沙波水流运动特性及提高沙波迎流面流速计算精度,采用两种概化模型,通过小水深沙波水槽试验,运用声学多普勒流速仪,对沙波沿程及垂线流速分布进行了测量。基于乐培九次生流理论公式,结合沙波水流特性,假定次生流在沙波迎流面上处于一个不断发展演变的过程,提出了发展函数和修正函数,得到了适用于沙波迎流面的流速垂线分布公式。研究结果表明:相对水深越小,沙波地形对迎流面水流作用越显著,使得上部流速减小、近底流速增大,且越靠近波峰这种现象越明显;建立的沙波流速公式与实测值吻合较好,能够准确地反映出迎流面流速变化规律。  相似文献   

3.
长江中游动床阻力计算   总被引:3,自引:0,他引:3       下载免费PDF全文
动床阻力计算是水沙数学模型中的重要研究内容。三峡工程运用后,进入长江中游河段的沙量剧减引起河床冲刷及床沙粗化,导致动床阻力的变化特点更复杂,有必要研究长江中游动床阻力的计算方法。采用长江中游枝城、沙市及汉口等5个水文站2001—2012年的1 266组实测数据,选取弗劳德数(Fr)和相对水深(h/D50)作为动床阻力计算的主要影响因子,建立基于水流能态分区的动床阻力公式并利用多元非线性回归的方法率定相关参数,采用长江中游上述5个水文站2013—2017年的651组实测数据对公式进行验证。结果表明:① 长江中游的动床阻力主要处于低能态区和过渡区;② 基于水流能态分区动床阻力公式的计算精度明显高于现有阻力公式,决定系数(R2)约为0.89,阻力系数n的计算偏差小于±30%的数据达97.7%。  相似文献   

4.
与顺直明渠水流相比,明渠交汇水流由于存在分离区和自由剪切面,其紊动特性引起的阻力较为复杂,交汇水流除床面阻力外还受到较强的阻力。基于数值模拟与实验比较分析表明,分离流与自由剪切流所产生的阻力(紊动粘性阻力)对于交汇水流数值模拟具有重要影响。同时,由于平面二维模型对二次流影响的忽略,断面环流较强时数值模拟会产生较大的阻力(环流阻力),而断面环流较弱时,交汇水流的三维特性相对较弱,采用平面二维模型和k-ε紊流模型能达到较好的模拟效果。因此,紊动及环流阻力的计算对交汇水流数值模拟的精度至关重要。  相似文献   

5.
山区阶梯式河道水流阻力研究   总被引:1,自引:0,他引:1       下载免费PDF全文
罗铭  张焕  丁锐  黄尔  杨奉广 《水科学进展》2019,30(5):719-726
山区阶梯式河道是自然界来水来沙和山区大比降河床相互作用所形成的,其水力特性、河道阻力较为复杂。为了深入研究其阻力机理,从河床结构阻水的角度提出阶梯式结构糙率尺度的概念,得到了适用于阶梯式河道跌落水流的形体阻力系数表达式,并由不同来源的阻力分量构成了新的山区阶梯式河道水流总阻力系数公式。新公式结果表明,通过不同类型河段的野外试验数据,表面泥沙、阶梯形状以及漂石产生的阻力系数分量之和与试验测量总阻力系数数据的误差较小。随着雷诺数和阶梯单元尺寸的增加,河床表面的泥沙肤面阻力系数基本不变,阶梯式结构形成的跌落水流过渡到滑行水流,阶梯形体阻力系数逐渐变小,而较大粒径松散漂石产生的水流阻力系数只随着雷诺数的增大而减小。  相似文献   

6.
山区型河道一维水力数值模拟糙率确定方法   总被引:3,自引:0,他引:3  
韩龙喜  朱羿  蒋莉华 《水文》2002,22(6):16-18,62
糙率参数取值是河道水流一维数值模拟的关键技术。山区型河道因河势变化急剧而产生的局部阻力对水流流态影响较大。根据山区型河道的水力特性,提出了综合反映子河段内河底切力及局部阻力的综合糙率的确定方法,并通过算例对该方法进行了测试,取得了预期的效果。该方法使得水流一维数值模拟时的计算子河段划分趋于方便,同时对于缺少历史观测资料的河道糙率参数的确定,提供了一种新的方法。  相似文献   

7.
肖勇  金忠青 《水科学进展》1997,8(2):148-153
基于相似理论中的不完全自相似假设,研究了粗糙区紊流流速分布的结构形式,通过对尼库拉兹粗糙管水流试验资料的分析,进而给出了粗糙区紊流新的指数型流速分布公式,在此基础上,探讨了管道和明渠的阻力规律。  相似文献   

8.
综合糙率是采用曼宁公式确定河道水位和流量关系的关键参数。在河道冰封期,冰盖的出现增加了流动的阻力,明流条件下确定的综合糙率不再适用,需要重新估算。基于Einstein阻力划分过流断面的原理,冰盖下矩形河道的过水断面可划分为冰盖区、河床区和边壁区。根据总流的连续性方程,在确定各分区糙率系数、水力半径和断面面积的基础上,提出了冰盖下矩形河道综合糙率的计算公式。采用已有的试验水槽测量数据和天然河道实测资料对公式进行了验证,结果表明:公式计算的综合糙率与实测值吻合较好,与Einstein公式和Sabaneev公式相比,计算精度更高;对于冰封水流,宽浅河道采用分区水深代替水力半径进行简化计算的条件有别于明渠水流,在宽深比大于20时,计算结果才满足精度要求。  相似文献   

9.
动床阻力在冲积河道洪水演进与河床冲淤计算中具有十分重要的作用。黄河下游不同水沙条件下的床面形态变化较大,动床阻力变化规律十分复杂,因此需要研究动床阻力的计算方法。利用黄河下游花园口、高村、利津等7个水文站1958—1990年的686组实测数据,确定了影响动床阻力变化的关键水沙因子——水流弗劳德数(Fr)与相对水深(h/D50),前者表示水流强度,后者表示床面相对粗糙度;建立了基于水流能态分区的动床阻力计算公式,并采用这些实测数据率定了公式中的相关参数;利用黄河下游各水文站1991—2016年的2 288组实测资料,进一步验证了公式的计算精度。计算结果表明:动床阻力的大小随弗劳德数或相对水深的增加而减小;基于水流能态分区动床阻力公式的计算精度明显高于未分区的公式及其他4个动床阻力公式,且决定系数(R2)总体接近0.80,说明水流强度与床面相对粗糙度对动床阻力影响十分显著。  相似文献   

10.
根据含淹没植物河流水流紊动强度与流速和流速分布的关系,建立紊动强度经验公式,并数学推导证明了紊动强度垂向分布最大值的存在。根据实验数据,该紊动强度最大值的大小及出现位置受植物和水流条件的影响:植物的存在增加水流阻力,植物排列密度改变紊动强度最大值的大小;植物叶片的摆动形成水流紊动的主要干扰源,植物/水深相对高度控制紊动强度最大值的出现位置;断面平均流速的变化改变水流的稳定性和植物冠层的高度,对紊动强度最大值的大小和出现位置均有一定影响。  相似文献   

11.
山区季节性溪流流量变化大,已有灌溉渠道量水设施难以在较大流量范围内均达到测流精度要求,本文以克伦普堰和排淤量水槽组合而成的堰槽组合量水设施为试验对象,通过试验探究其测流机制。根据流量在5~79 L/s范围内的概化水槽水力性能试验,分析不同流量下的水面线、弗劳德数、垂线纵向时均流速、薄水层特征长度和特征宽度的变化,建立不同流量阈值范围内的测流公式。结果表明:①随流量的增大,堰槽组合设施流动形态从槽内流变为堰流,流量阈值对应的阈值相对水深为0.885,拟合得到组合设施槽内流和堰流的测流公式,与实测流量对比,相对误差小于3%。②组合设施槽内流和堰流水力特性不同,槽内流时槽内各测点纵向时均流速、薄水层的特征长度和特征宽度以及综合流量系数均随着流量增大而增大;堰流时,排淤量水槽槽内前段各测点纵向时均流速随着流量增大而减小,后段各测点纵向时均流速随着流量增大而增大,槽内收缩扭面段中部附近断面平均流速大小一致。③堰槽组合流量系数随着流量增大而减小。④堰槽设施下游薄水层的特征长度和特征宽度随着流量增大有下降趋势,最大值均出现在流量阈值情况下。本研究有效解决了流量变幅较大的明渠测流设施匮乏问题,可为山区季节性溪流测流设施应用提供参考。  相似文献   

12.
封冻河道下流速分布和阻力问题探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
王军 《水科学进展》2005,16(1):28-31
封冻河道的水流阻力计算和水流速度重分布问题一直是河冰研究的重要问题之一,多年来,很多学者进行了相关研究,然而研究大多采用了冰盖区、河床区及过流断面水流平均速度相等的假定.依据Prandtal半经验紊流理论,采用目前普遍使用的对数流速分布公式,对上述假定进行了研究分析,由分析来看,这种假定的正确性需要探讨;分析也表明,阻力计算时若假定冰盖区和床面区的能坡相等,对宽浅式河道也将导出谬误.依据分析,就如何解决相应的问题提出了思路和建议.  相似文献   

13.
All major streams draining the southwestern flank of the Edwards Plateau in south-central Texas transport large volumes of gravel and sandy muddy gravel and are developing meander lobe sequences consisting predominantly of coarse gravel. The largest of these streams, the Nueces River, has a sinuosity index of 1.3 and an average stream surface slope of 1.8 m/km in the study area. Stream discharge is variable and has ranged from no flow to more than 17,000 m3/s. Mean clast b-axis length for the ten largest clasts at thirteen sample sites ranged from 2.5 to 10.8 cm. Velocities of 2.7-4.4 m/s 1 m above the stream bed are required to transport these clasts. Stream velocities of these magnitudes occur about once in 8 years when discharge of the Nueces River exceeds 3300 m3/s. Mean grain size of Nueces River alluvium ranges from 1.2 to 3.4 cm. At a flow depth of 1 m, sediment of this size has a critical erosion velocity of 1.8-3 m/s. Velocities of this magnitude occur about once in two years when discharge exceeds 340 m3/s. Under these conditions flow is subcritical, with critical shear stresses on depositional surfaces ranging from 6.4 to 12.7 kg/m2. Gravel clasts are imbricated and channel bed forms are predominantly transverse gravel bars with slip faces ranging up to 2 m high and wavelengths in excess of 100 m. Stratification includes graded planar crossbeds and horizontal beds. Lower lateral accretion face sediments are also predominantly transverse bars; upper lateral accretion face deposits occur as longitudinal gravel ridges deposited in the lee of vegetation and, less commonly, as chute bars. Near the upper limit of meander lobes where vegetation is heavy, mud and muddy sand occur as overbank deposits; in these deposits sedimentary structures other than desiccation cracks are rare. Sedimentary sequences in gravel meander lobe systems deposited by low sinuosity streams are graded or non-graded horizontal beds and planar cross-beds overlain by mud and muddy sand interbedded with horizontally bedded gravels. Sequences may be several metres thick, but probably do not exceed 8-10 m in thickness. These deposits in turn are overlain by overbank deposits of mud and muddy sand. Similar sedimentary sequences occur in the extensive Quaternary terraces that parallel the Nueces River.  相似文献   

14.
Controlled laboratory experiments reveal that the lower part of turbidity currents has the ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of the fluid mud and the density of the turbidity current is higher than the density of the substrate. Upon entering the substrate, the turbidity current either induces mixing between flow‐derived sediment and substrate sediment, or it forms a stable horizontal flow front inside the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it resembles the front of a ‘bottom‐hugging’ turbidity current. The ‘suprabed’ portion of the turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically separated from the intrabed flow by a long horizontal layer of mud which originates from the mud that is swept over the top of the intrabed flow and then incorporated into the flow. The intrabed flow and the mixing mechanism are specific types of interaction between turbidity currents and muddy substrates that are part of a larger group of interactions, which also include bypass, deposition, erosion and soft sediment deformation. A classification scheme for these types of interactions is proposed, based on an excess bed shear stress parameter, which includes the difference in the bed shear stress imposed by the flow and the yield stress of the substrate and an excess density parameter, which relies on the density difference between the flow and the substrate. Based on this classification scheme, as well as on the sedimentological properties of the laboratory deposits, an existing facies model for intrabed turbidites is extended to the other types of interaction involving soft muddy substrates. The physical threshold of flow‐substrate mixing versus stable intrabed flow is defined using the gradient Richardson number, and this method is validated successfully with the laboratory data. The gradient Richardson number is also used to verify that stable intrabed flow is possible in natural turbidity currents, and to determine under which conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in natural turbidity currents with flow velocities well below ca 3·5 m s?1, although a wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed flow is stable only at high‐density gradients and low‐velocity gradients across the upper boundary of the turbidity current. Finally, the gradient Richardson number is used as a scaling parameter to set the flow velocity limits of a natural turbidity current that formed an inferred intrabed turbidite in the deep‐marine Aberystwyth Grits Group, West Wales, United Kingdom.  相似文献   

15.
16.
论壳内韧性流层及其构造表现   总被引:11,自引:0,他引:11  
地球物理探测表明,在上地壳之下有一不均匀分布的壳内低速层,中地壳之中还有一些局部的低速层。现代破坏性地震震源主要集中于10~15km深处,相当于这一低速层之顶部,处于脆韧性过渡带内。从岩石变形的角度看,这个低速层是一个壳内的韧性流变层,以发育近水平的韧性剪切带和褶叠层构造为其特征。它在纵向上和横向上都是不均一的,代表了地壳尺度的韧性剪切带,在地壳构造的演化中起着极重要的作用。  相似文献   

17.
模拟降雨条件下坡面流水动力学特性研究   总被引:10,自引:0,他引:10       下载免费PDF全文
为探明降雨条件下沙黄土坡面水流水动力学特性,以流体力学和泥沙运动力学理论为依据,通过5个坡度和5个雨强组合条件下室内模拟降雨试验,系统研究了坡面水流水力参数的变化规律。结果表明,降雨条件下坡面薄层水流雷诺数均小于580,处于层流失稳区;水流流型随雨强和坡度的变化而发生转捩,当坡度较缓、雨强较小时,床面形态处于低能态区和过渡区,床面出现沙纹现象,水流宏观上呈缓流,反之,坡度较陡、雨强较大时,床面由沙纹和沙垄向动平床过渡,宏观上多呈急流;并根据薄层水流阻力组成特点,推导出沙黄土坡面薄层水流阻力计算公式。验证结果表明,该式误差较小,可为坡面侵蚀预报模型的构建提供参考。  相似文献   

18.
冰盖下水流垂线流速分布规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
河道中冰盖显著改变了水流流动结构.采用k-ε紊流模型建立了冰盖下水流流动垂向二维数值模型;根据量纲分析理论提出了流速分布规律的影响因素;针对各种因素的不同组合进行了数值计算,并对其流动特性如最大流速点位置、冰区及床面区平均流速等进行了分析研究;对冬季封冻河道的二点测流法精度进行了理论分析.研究结果表明,冰盖下水流的纵向流速在流动核心区并不遵循对数分布规律,同时揭示了冰盖底部与河床的相对粗糙比、河床相对粗糙度及雷诺数对流速分布规律的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号