首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the velocity and magnetic fields associated with supergranulation has been investigated using the Sacramento Peak Observatory Diode Array Magnetograph. The observations consist of time sequences of simultaneous velocity, magnetic field, and chromospheric network measurements. From these data it appears that the supergranular velocity cells may have lifetimes in excess of the accepted value of 24 hours. Magnetic field motions associated with supergranulation were infrequent and seem to be accompanied by changes in the velocity field. More prevalent were the slow dissipation and diffusion of stationary flux points. Vertical velocity fields of 200 m s–1 appear to be confined to downflows in magnetic field regions at supergranular boundaries. These downflows are only observed using certain absorption lines. Corresponding upflows in the center of supergranules of less than 50 m s–1 may be present but cannot be confirmed.  相似文献   

2.
H. Wang  F. Tang  H. Zirin  J. Wang 《Solar physics》1996,165(2):223-235
We analyzed two sequences of quiet-Sun magnetograms obtained on June 4, 1992 and July 28, 1994. Both were observed during excellent seeing conditions such that the weak intranetwork (IN) fields are observed clearly during the entire periods. Using the local correlation tracking technique, we derived the horizontal velocity fields of IN and network magnetic fields. They consist of two components: (1) radial divergence flows which move IN fields from the network interior to the boundaries, and (2) lateral flows which move along the network boundaries and converge toward stronger magnetic elements. Furthermore, we constructed divergence maps based on horizonal velocities, which are a good representation of the vertical velocities of supergranules. For the June 4, 1992 data, the enhanced network area in the field of view has twice the flux density, 10% higher supergranular velocity and 20% larger cell sizes than the quiet, unenhanced network area. Based on the number densities and flow velocities of IN fields derived in this paper and a previous paper (Wang et al., 1995), we estimate that the lower limit of total energy released from the recycling of IN fields is 1.2 × 1028 erg s–1, which is comparable to the energy required for coronal heating.  相似文献   

3.
We trace the photospheric motions of 170 concentrations of magnetic flux tubes in and around the decaying active region No. 19824 (CMP 23 October 1986), using a series of magnetograms obtained at the Big Bear Solar Observatory. The magnetograms span an interval of just over five days and cover an area of about 4 × 5 arc min centered on the active region. We find a persistent large-scale flow pattern that is superposed on the small-scale random motions of both polarities. Correction for differential rotation unveils the systematic, large-scale flow surrounding the core region of the magnetic plage. The flow (with a mean velocity of 30 m s–1) is faster and more pronounced around the southern side of the core region than around the northern side, and it accelerates towards the western side of the active region. The northern and southern branches of the large-scale flow converge westward of the core region, dragging along the westernmost sunspot and some of the magnetic flux near it. The overall pattern of the large-scale flow resembles the flow of a river around a sand bar. The long-term evolution of the active region suggests that the flow persists for several months. We discuss the possible association of the large-scale flow with the torsional oscillation.We correct the observed motions of concentrations of flux tubes for the large-scale flow in order to study their random motions. The small-scale random motions (with a mean speed of 150 m s–1) can be characterized by a diffusion coefficient of 250 km2 s–1 for the area surrounding the core region of the magnetic plage. The diffusion coefficient characterizing the small-scale motions within the core region (mostly observed near its periphery and in areas of relatively low flux density) is only 110 km2 s–1. The lower diffusion coefficient in the core region appears to be caused mainly by a smaller step length rather than by a distinct difference in velocities.Visitor at the Lockheed Palo Alto Research Laboratories.  相似文献   

4.
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 – 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.  相似文献   

5.
In the recent papers, we introduced a method utilised to measure the flow field. The method is based on the tracking of supergranular structures. We did not precisely know, whether its results represent the flow field in the photosphere or in some subphotospheric layers. In this paper, in combination with helioseismic data, we are able to estimate the depths in the solar convection envelope, where the detected large-scale flow field is well represented by the surface measurements. We got a clear answer to question what kind of structures we track in full-disc Dopplergrams. It seems that in the quiet Sun regions the supergranular structures are tracked, while in the regions with the magnetic field the structures of the magnetic field are dominant. This observation seems obvious, because the nature of Doppler structures is different in the magnetic regions and in the quiet Sun. We show that the large-scale flow detected by our method represents the motion of plasma in layers down to ~10 Mm. The supergranules may therefore be treated as the objects carried by the underlying large-scale velocity field.  相似文献   

6.
H. Wang  H. Zirin 《Solar physics》1988,115(2):205-219
We have measured the proper motion of magnetic elements on the quiet Sun by means of local correlation tracking. The existence of a pattern in the intranetwork (IN) flow is confirmed. This velocity field is consistent with the direct Doppler measurement of the horizontal component of the supergranular velocity field. The IN elements generally move toward the network boundaries. By tracking test points we confirm that the magnetic elements converge in areas corresponding to the magnetic network. But because the IN elements are of random polarity, they cannot contribute to the growth or maintenance of the magnetic network.By calculating the cross correlation between the magnetogram and Dopplergram, we confirm that the supergranule boundaries and the magnetic network are roughly correlated.  相似文献   

7.
Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.  相似文献   

8.
H. Lin  J. Varsik  H. Zirin 《Solar physics》1994,155(2):243-256
High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor - the ratio of the area occupied by the magnetic elements to the total area - of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993.We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle.We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70°–80°) and low (60°–70°) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.  相似文献   

9.
Coronal bright points, first identified as X-ray Bright Points (XBPs), are compact, short-lived and associated with small-scale, opposite polarity magnetic flux features. Previous studies have yielded contradictory results suggesting that XBPs are either primarily a signature of emerging flux in the quiet Sun, or of the disappearance of pre-existing flux. With the goal of improving our understanding of the evolution of the quiet Sun magnetic field, we present results of a study of more recent data on XBPs and small-scale evolving magnetic structures. The coordinated data set consists of X-ray images obtained during rocket flights on 15 August and 11 December, 1987, full-disk magnetograms obtained at the National Solar Observatory - Kitt Peak, and time-lapse magnetograms of multiple fields obtained at Big Bear Solar Observatory. We find that XBPs were more frequently associated with pre-existing magnetic features of opposite polarity which appeared to be cancelling than with emerging or new flux regions. Most young, emerging regions were not associated with XBPs. However, some XBPs were associated with older ephemeral regions, some of which were cancelling with existing network or intranetwork poles. Nearly all of the XBPs corresponded to opposite polarity magnetic features which wereconverging towards each other; some of these had not yet begun cancelling. We suggest that most XBPs form when converging flow brings oppositely directed field lines together, leading to reconnection and heating of the newly-formed loops in the low corona.  相似文献   

10.
We discuss the dynamical interpretation of evidence for an azimuthal tilt of the global magnetic field from the radial direction at the photosphere. We point out that the Reynolds stresses of supergranular convective motions might produce the required small tilt of intense flux tubes, without implying an unacceptably large momentum flux across the photospheric surface into the solar wind. Our calculations lead us to conclude that there is little reason, at present, to infer (Duvall et al., 1979) a separate low intensity constituent of the global magnetic field, from the observational evidence for an azimuthal tilt. More precise measurements of the vertical component of supergranular motions would be useful in determining the actual torque exerted by the Reynolds stresses on the magnetic field.  相似文献   

11.
Romano  P.  Contarino  L.  Zuccarello  F. 《Solar physics》2003,218(1-2):137-150
Using a 28-hour time series of line-of-sight magnetograms taken by the Michelson Doppler Imager (MDI), we determined the magnetic flux variations and the rate of magnetic helicity transport at the footpoints of a filament in active region NOAA 8375. The filament was characterized by a positive helicity change due to shearing motions in both footpoints and showed several partial eruptions during the observing time. In particular, we considered 4 events registered in the Hα daily reports of Solar Geophysical Data. We found a strong temporal correlation between filament eruptions and helicity transport from the photospheric magnetic structures at the filament footpoints into the corona: in at least one footpoint, all of the events were preceded by an evident increase and followed by a small decrease of the emerging magnetic flux and of the magnetic helicity change due to shearing motions. We compared these two mechanisms of helicity transport and found that the predominant role to drive filament instability is played by emergence of new magnetic flux from the convection zone.  相似文献   

12.
Results of a detailed study on supergranule lifetime and velocity fields are presented. We show the correlation between the observed downdraft velocity and the network magnetic flux elements on the quiet sun. After excluding areas with magnetic flux density 25 G, we find that the upper limit of the supergranule vertical speed is 0.1 km s–1 for both downdraft and updraft, and the r.m.s. speed is 0.03 km s–1. By observing the evolution of individual supergranules, we find that the average lifetime of supergranules might be 50 hours. We describe different ways of formation and decay of supergranular cells. New cells usually form in an area containing no pre-existing supergranule velocity fields. Cells may disappear in two ways: fragmentation and fading away.  相似文献   

13.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun??s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the ??proxy Poynting flux,?? and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.  相似文献   

14.
Mathew  Shibu K.  Ambastha  Ashok 《Solar physics》2000,197(1):75-84
Active region NOAA 8038 was observed from 10 to 13 May, 1997 using the USO solar video magnetograph. During this period, the active region was mostly inactive, and gave rise to only a single notable flare of 1N/C1.3 class on May 12, 1997/04:45 UT. The flare occurred in a weak field location, but new emerging fluxes were observed prior to the flare onset. Horizontal motions of the network photospheric magnetic fluxes were inferred using USO and SOHO magnetograms, and velocities in the range 300–800 m s–1 were estimated. The initial flare brightening was observed at the flux cancellation site where magnetic field gradients were found to increase. Detailed analyses of flux motions, cancellation and their relation with the flare are presented.  相似文献   

15.
Ideas and models for the appearance of photospheric magnetic structure are confronted with observational data. Some findings are: The magnetic flux emerging in an active region consists of a bundle of flux tubes which were already concentrated before penetrating into the photosphere. A model of a rising bunch of flux tubes joining into a few strands at larger depths describes the coalescence of spots near the leading and following edges of the active region while more flux may surface near the center of the region. There is no observational evidence for appreciable helical twists in the flux bundles.Throughout the region's lifetime the magnetic elements move coherently, the whole magnetic structure rotates faster than the quiet photosphere. In active regions the convective flow at scales larger than the granulation is arrested by the magnetic structure. The long-lived supergranular cells around spots and in the enhanced network in turn determine the decay properties of spots and facular clusters. The modulation of the convective flow by the magnetic structure explains the slow dispersal of faculae.The hierarchy of magnetic elements (sunspots-pores-knots-facular clusters-facular points) may be explained by a set of magnetostatic flux tube models in the top of the convection zone. The underlying assumptions are that the heat flow along the magnetic field is reduced and that there is no heat exchange across the field except by radiation.A tentative model is proposed to account for the amplification, ascent and emergence of intense flux bundles. The assumptions are: (i) the field is concentrated in toroidal bundles by differential rotation, (ii) in the deep convection zone flux bundles are contained by the external turbulent pressure, and (iii) for field strengths up to the equipartition value efficient lateral heat exchange is possible. After a loop has surfaced radiative cooling and subsequent convective downflow reduce the temperature in the top of the flux tubes which then contract to field strengths well above the local equipartition value. There the heat flow is channelled along the field, which creates the conditions for the magnetostatic flux tube models without requiring a blocking of the heat flow somewhere within the tubes.The paper contains a brief review on the evolution of the magnetic field from the emergence in active regions up to the enigmatic disappearance, and a list of topics for further observational investigation.  相似文献   

16.
We analyse data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in Ca ii H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. Three complete series of these events are detected with remarkably similar properties, i.e. lifetime of ≈ 12 min, maximum length and area of 2 – 4 Mm and 1.6 – 4 Mm2, respectively, and all with associated brightenings. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e. small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they have reached chromospheric heights) with pre-existing magnetic fields, as well as being due to reconnection/cancellation events in U-loop segments of emerging serpentine fields. The characteristic length scale, area and lifetime of these elementary flux emergence events agree well with those of the serpentine field observed in emerging active regions. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet Sun regions and serpentine flux emergence signatures in active regions. The physical processes of the emergence of granular-scale magnetic loops seem to be the same in the quiet Sun and active regions. The difference is the reduced chromospheric emission in the quiet Sun attributed to the fact that loops are emerging in a region of lower ambient magnetic field density, making interactions and reconnection less likely to occur. Incorporating the novel features of granular-scale flux emergence presented in this study, we advance the scenario for serpentine flux emergence.  相似文献   

17.
We present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows. A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag on the footpoints of magnetic structures. We present evidence of small-scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular-scale flows. We show strong spatial and temporal correlation between quiet-Sun soft X-ray emission (from Yohkoh SXT) and SOHO MDI-derived flux removal events driven by deduced photospheric flows. We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors. In the near future, high resolution soft X-ray images from XRT on the Hinode satellite will allow definitive, quantitative verification of our results. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

18.
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2?–?10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.  相似文献   

19.
Zhang  Jun  Wang  Jingxiu  Lee  Chik-Yin  Wang  Haimin 《Solar physics》2000,192(1-2):415-426
Using high-resolution observations of deep magnetograms and H filtergrams obtained at Big Bear Solar Observatory during 17–24 October 1997, we have studied the interaction of intranetwork and network elements. The relationship between small-scale magnetic fields and active phenomena is investigated. Most of the small-scale active phenomena are triggered by the interaction either between intranetwork and network magnetic elements or among several network elements. The energy released due to the interaction of intranetwork–network elements and network–network elements is large enough to heat the corona.  相似文献   

20.
A case of cancellation of magnetic fields is observed during the decay of a small active region. Three different sources of information were simultaneously used: high resolution magnetograms, chromospheric Caii filtergrams and transverse velocity fields.A magnetic structure is apparently dragged to the network by the supergranular velocity field while it splits into two. There, they meet another structure with opposite magnetic polarity. After a period of coexistence, the magnetic pairs vanish, leaving no trace of either magnetic or chromospheric structures.Visiting astronomer, Sacramento Peak Observatory, operated by the Association of Universities for Research in Astronomy, Inc. under contract AST-78-17292 with the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号