首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gravitational instability of an infinite homogeneous finitely conducting viscid fluid through porous medium is studied in the presence of a uniform vertical magnetic field and finite ion Larmor radius (FLR) effects. The medium is considered uniformly rotating along and perpendicular to the direction of the prevalent magnetic field. A general dispersion relation is obtained from the relevant linearized perturbation equations of the problem. Furthermore, the wave propagation along and perpendicular to the direction of existing magnetic field has been discussed for each direction of the rotation. It is found that the simultaneous presence of viscosity finite conductivity, rotation, medium porosity, and FLR corrections does not essentially change the Jeans's instability condition. The stabilizing influence of FLR in the case of transverse propagation is reasserted for a non-rotating and inviscid porous medium. It is shown that the finite conductivity has destabilizing influence on the transverse wave propagation whereas for longitudinal propagation finite conductivity does not affect the Jean's criterion.  相似文献   

2.
Magnetogravitational instability of a thermally-conducting, rotating plasma flowing through a porous medium with finite conductivity and finite Larmor radius in the presence of suspended particles has been investigated. The wave propagation has been considered for both parallel and perpendicular axes of rotation. Magnetic field is being taken in the vertical direction. A general dispersion relation has been derived through relevant linearized perturbation equations. It has been observed that the condition of instability is determined by the Jeans's criterion in its modifed form. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one. Rotation decreases the Larmor radius. Porosity decreases the Alfvén velocity. In case of a viscous medium the effects of FLR, rotation, and suspended particles are not observed in the Jeans's condition, for transverse propagation for rotational axis parallel to the magnetic field. The effects of rotation and FLR are decreased by the porosity and the suspended particles. Finite conductivity removes the Alfvén velocity from Jeans's condition.  相似文献   

3.
The gravitational stability of magnetized self-gravitating two-component plasma of finite conductivity flowing through porous medium is studied. Effect of magnetic field, porosity, viscosity, finite conductivity, and neutral gas friction is considered on the stability of the system. Dispersion relations are derived from linearized equations using normal mode analysis. Longitudinal and transverse wave propagations are discussed. On the basis of Hurwitz criterion, the stability of the system is discussed. It is found that Jeans's criterion determines the stability of the system. Jeans's expression depends on the sonic speeds in both the components. For transverse wave propagation in perfectly conducting plasma. Jeans's expression is modified due to magnetic field and porosity but in case of finitely conducting plasma the Jeans's expression remains unaltered. Collisional frequency, viscosity, permeability of the porous medium have damping effect.  相似文献   

4.
The effects of finite ion Larmor radius (FLR) corrections, Hall current and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effects of finite electrical resistivity, thermal conductivity and permeability for star formation in interstellar medium have been investigated. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion gets modified into radiative instability criterion. The finite electrical resistivity removes the effect of magnetic field and the viscosity of the medium removes the effect of FLR from the condition of radiative instability. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. Numerical calculation shows stabilizing effect of viscosity, heat-loss function and FLR corrections, and destabilizing effect of finite resistivity and permeability on the thermal instability. The outcome of the problem discussed the formation of star in the interstellar medium.  相似文献   

5.
The gravitational instability of an infinite homogenous rotating plasma through a porous medium in the presence of a uniform magnetic field with finite electrical and thermal conductivities has been studied. With the help of relevant linearized perturbation equations of the problem, a general dispersion relation is obtained, which is further reduced for the special cases of rotation, parallel and perpendicular to the megnetic field acting in the vertical direction. Longitudinal and transverse modes of propagation are discussed separately. It is found that the joint effect of various parameters is simply to modify the Jeans's condition of instability. The effect of finite electrical conductivity is to remove the effect of magnetic field where as the effect of thermal conductivity is to replace the adiabatic velocity of sound by the isothermal one. Rotation has its effect only along the magnetic field in the transverse mode of propagation for an inviscid plasma, thereby stabilizing the system. Porosity reduces the effect of both, the magnetic field and the rotation, in the transverse mode of propagation in both the cases of rotation. The effect of viscosity is to remove the rotational effects parallel to the magnetic field in the transverse mode of propagation.  相似文献   

6.
The magneto-gravitational instability of an infinite, homogenous, and infinitely conducting plasma flowing through a porous medium is studied. The finite ion Larmor radius (FLR) effects and viscosity are also incorporated in the analysis. The prevalent magnetic field is assumed to be uniform and acting in the vertical direction. A general dispersion relation has been obtained from the relevant linearized perturbation equations of the problem. The wave propagation parallel and perpendicular to the direction of the magnetic field have been discussed. It is found that the condition of the instability is determined by the Jeans criterion for a self-gravitating, infinitely conducting, magnetized fluid through a porous medium. Furthermore, for transverse perturbation FLR is found to have stabilizing influence when the medium is considered inviscid.  相似文献   

7.
The gravitational instability of an infinite homogeneous self-gravitating and infinitely conducting gas-particle medium is considered in the presence of suspended particles and a variable horizontal magnetic field varying in vertical direction. It is found that the Jeans's criterion of instability remains unaffected even if the effects due to suspended particles and variable horizontal magnetic field are included.  相似文献   

8.
The gravitational instability of an infinite homogeneous self-gravitating mixture through porous medium in the presence of a variable horizontal magnetic field varying in vertical directions has been considered to include, separately, the effects due to suspended particles and collisions between ionized and neutral components. The dispersion relations in both cases have been obtained. It has been found that Jeans's criterion of instability holds good even if the effects due to suspended particles, collisions, porosity, and variable magnetic field are considered.  相似文献   

9.
The gravitational instability of an infinite homogeneous self-gravitating and finitely conducting, rotating gas-particle medium, in the presence of a uniform vertical magnetic field, is studied to include finite Larmor radius and suspended particles effects. The particular cases of the effects of rotation, finite conductivity, finite Larmor radius and suspended particles on the waves propagated along and perpendicular to magnetic field have been discussed. Jeans's criterion determines the gravitational instability.  相似文献   

10.
A discussion of gravitational instability of a finitely conducting medium with streams of variable velocity distribution is made in the presence of a uniform magnetic field. It is found that the variable streaming motion shows a destabilizing effect and affects the instability criterion only in the case of general wave propagation. For purely parallel propagation to the direction of the magnetic field and the streaming motion, the criterion is independent of the variation in the streaming motion and further the Jeans's criterion is found to remain unaffected in this case. For purely transverse propagation, the criterion is independent of any streaming motion and the Jeans's criterion remains unaffected. The criterion is further independent of the magnetic field and the finite conductivity except in the case of transverse propagation where the magnetic field exhibits a stabilizing influence in case of an infinitely conducting medium.  相似文献   

11.
The problem of gravitational instability of an infinite homogeneous self-gravitating medium carrying a uniform magnetic field in the presence of Hall effect has been investigated to include the effect due to rotation. The dispersion relation has been obtained. It has been found that the Jeans's criterion for the instability remains unaffected even when the effect due to rotation is considered in the presence of Hall effect carrying a uniform magnetic.  相似文献   

12.
The gravitational instability of flow through porous medium for some hydrodynamical and hydromagnetical systems of astrophysical interest is investigated. The effects of rotation, magnetic field, viscosity and finite electrical conductivity are studied for the gravitational instability through porous medium. The effect of suspended particles on the instability is also considered. It is found that Jean's criterion remains unchanged in the presence of porosity, viscosity, finite conductivity, rotation, magnetic field and suspended particles in the medium.  相似文献   

13.
The self-gravitational instability of an ionized, thermally-conducting, magnetized, rotating plasma flow through a porous medium has been studied in the presence of suspended particles. The ionized gas-particle medium has been considered rotating along and perpendicular to the vertical magnetic field. Propagation of the plasma waves has been studied for the longitudinal and the transverse modes for both the cases of rotation. A general dispersion relation has been derived with the help of relevant perturbation equations, using the method of normal mode analysis. The Jeans criterion determines the condition of gravitational instability in all the cases with some modifications introduced by the various parameters considered. Thermal conductivity replaces the adiabatic sonic speed by the isothermal one. Considering the longitudinal mode of propagation with perpendicular rotational axis, for an inviscid plasma with adiabatic behaviour the effect of both, the rotation and the suspended particles has been removed by the magnetic field. For the transverse mode of propagation with the axis of rotation parallel to the magnetic field, the viscosity removes the effect of both, the rotation and the suspended particles. Porosity reduces the effect of both, the rotation and the magnetic field, whereas the concentration of the suspended particles reduces the rotational effect.  相似文献   

14.
The instability of a stratified layer of a self-gravitating plasma has been studied to include jointly the effects of viscosity, Coriolis forces and the finite Larmor radius (FLR). For a plasma permeated by a uniform horizontal magnetic field, the stability analysis has been carried out for a transverse mode of wave propagation. The solution has been obtained through variational methods for the case when the direction of axis of rotation is along the magnetic field. The analysis for the case when the direction of rotation is transverse to the magnetic field has also been considered and the solutions for this case have been obtained through integral approach. The dispersion relations have been derived in both the cases and solved numerically. It is found that both the viscous and FLR effects have a stabilizing influence on the growth rate of the unstable mode of disturbance. Coriolis forces are found to have stabilizing influence for small wave numbers and destabilizing for large wave numbers.  相似文献   

15.
The effects of arbitrary radiative heat-loss functions and Hall current on the self-gravitational instability of a homogeneous, viscous, rotating plasma has been investigated incorporating the effects of finite electrical resistivity, finite electron inertia and thermal conductivity. A general dispersion relation is obtained using the normal mode analysis with the help of relevant linearized perturbation equations of the problem, and a modified Jeans criterion of instability is obtained. The conditions of modified Jeans instabilities and stabilities are discussed in the different cases of our interest. We find that the presence of arbitrary radiative heat-loss functions and thermal conductivity modifies the fundamental Jeans criterion of gravitational instability into a radiative instability criterion. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. For longitudinal propagation, it is found that the condition of radiative instability is independent of the magnetic field, Hall parameter, finite electron inertia, finite electrical resistivity, viscosity and rotation; but for the transverse mode of propagation it depends on the finite electrical resistivity, the strength of the magnetic field, and it is independent of rotation, electron inertia and viscosity. From the curves we find that the presence of thermal conductivity, finite electrical resistivity and density-dependent heat-loss function has a destabilizing influence, while viscosity and magnetic field have a stabilizing effect on the growth rate of an instability. The effect of arbitrary heat-loss functions is also studied on the growth rate of a radiative instability.  相似文献   

16.
The gravitational instability of an infinite homogeneous and infinitely conducting selfgravitating gas particle medium in the presence of suspended particles of a Hall plasma is considered. The particular cases of the effects of Hall currents and suspended particles on the waves propagated along and perpendicular to magnetic field have been discussed. Jeans's criterion determines the gravitational instability.  相似文献   

17.
The effects of Hall currents, finite conductivity, and collision with neutrals have been studied on the gravitational instability of a partially-ionized plasma. It is assumed that plasma is permeated by an oblique magnetic field. The dispersion relation has been obtained and numerical calculations have been performed to obtain the dependence of the growth rate of the gravitationally unstable mode on the various physical parameters involved. It is found that Jeans's criterion remains unchanged in the presence of Hall currents, finite conductivity, and collisions. The Hall currents, finite conductivity, and collisions have destabilizing influence on the unstable mode of wave propagation of a gravitational instability of partially-ionized plasma.  相似文献   

18.
The gravitational instability of an infinite homogeneous self-gravitating plasma through porous medium is considered to include, separately, the effects due to rotation and collisions between ionized and neutral components. The dispersion relations are obtained in both cases. It is found that the gravitational instability of a composite and rotating plasma in the presence of a variable horizontal magnetic field through porous medium is determined by the Jeans's criterion.  相似文献   

19.
The gravitational instability of an infinite homogeneous self-gravitating rotating plasma in the presence of a uniform vertical magnetic field has been studied to include the FLR effects. It has been found that the Jeans' criterion of instability remains unaffected even if rotation and FLR effects are included. The effect of rotation is to decrease the Larmor radius by an amount-depending upon the wavenumber of perturbation. The particular cases of the effect of FLR and rotation on the waves propagated along and perpendicular to the magnetic field have been discussed.  相似文献   

20.
本文研究了磁流体力学与高频等离子体波( 包括纵横模式) 之间的精巧的相互作用。研究表明,这些等离激元会在电流片内诱发一种阻抗不稳定,并最终导至磁重联,出现爆发性不稳定。在高涨的离声湍动情况下,高温电流片模型必须采用反常电导率,而非库仑电导率。理论估算的结果与观测相一致。因此这种计及等离激元有质动力作用的新磁重联理论,基本上能解释耀斑现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号