首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The redshifted 1420 MHz emission from the HI in unresolved damped Lyman-α clouds at high z will appear as a background radiation in low frequency radio observations. This holds the possibility of a new tool for studying the universe at high-z, using the mean brightness temperature to probe the HI content and its fluctuations to probe power spectrum. Existing estimates of the HI density atz−3 imply a mean brightness temperature of 1 mK at 320 MHz. The cross-correlation between the temperature fluctuation across different frequencies and sight lines is predicted to vary from 10−7 K2 to 10−8 K2 over intervals corresponding to spatial scales from 10 Mpc to 40 Mpc for some of the currently favoured cosmological models. Comparing this with the expected sensitivity of the GMRT, we find that this can be detected with ∼ 10 hrs of integration, provided we can distinguish it from the galactic and extragalactic foregrounds which will swamp this signal. We discuss a strategy based on the very distinct spectral properties of the foregrounds as against the HI emission, possibly allowing the removal of the foregrounds from the observed maps.  相似文献   

2.
3.
We use the Fisher matrix formalism to predict the prospects of measuring the redshifted 21-cm power spectrum in different k-bins using observations with the upcoming Ooty Wide Field Array (OWFA) which will operate at 326.5 MHz. This corresponds to neutral hydrogen (HI) at z = 3.35, and a measurement of the 21-cm power spectrum provides a unique method to probe the large-scale structures at this redshift. Our analysis indicates that a 5σ detection of the binned power spectrum is possible in the k range 0.05 ≤ k ≤ 0.3 Mpc?1 with 1000 hours of observation. We find that the signal- to-noise ratio (SNR) peaks in the k range 0.1?0.2 Mpc?1 where a 10σ detection is possible with 2000 hours of observations. Our analysis also indicates that it is not very advantageous to observe beyond 1000 h in a single field-of-view as the SNR increases rather slowly beyond this in many of the small k-bins. The entire analysis reported here assumes that the foregrounds have been completely removed.  相似文献   

4.
We investigate the possibility of probing the large scale structure in the universe at large redshifts by studying fluctuations in the redshifted 1420 MHz emission from the neutral hydrogen (HI) at early epochs. The neutral hydrogen content of the universe is known from absorption studies forz ≲ 4.5. TheHI distribution is expected to be inhomogeneous in the gravitational instability picture and this inhomogeneity leads to anisotropy in the redshifted HI emission. The best hope of detecting this anisotropy is by using a large low-frequency interferometric instrument like the Giant Meter-Wave Radio Telescope (GMRT). We calculate the visibility correlation function 〈Vv(U) Vv′(U)〉 at two frequenciesi andv′ of the redshiftedHI emission for an interferometric observation. In particular we give numerical results for the two GMRT channels centered aroundν = 325 MHz andν = 610 MHz from density inhomogeneity and peculiar velocity of the HI distribution. The visibility correlation is- 10-10-10-9 Jy2. We calculate the signal-to-noise for detecting the correlation signal in the presence of system noise and show that the GMRT might detect the signal for integration times - 100 hrs. We argue that the measurement of visibility correlation allows optimal use of the uncorrelated nature of the system noise across baselines and frequency channels. On leave from Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India.  相似文献   

5.
Distribution of cold gas in the post-reionization era provides an important link between distribution of galaxies and the process of star formation. Redshifted 21-cm radiation from the hyperfine transition of neutral hydrogen allows us to probe the neutral component of cold gas, most of which is to be found in the interstellar medium of galaxies. Existing and upcoming radio telescopes can probe the large scale distribution of neutral hydrogen via HI intensity mapping. In this paper, we use an estimate of the HI power spectrum derived using an ansatz to compute the expected signal from the large scale HI distribution at z~3. We find that the scale dependence of bias at small scales makes a significant difference to the expected signal even at large angular scales. We compare the predicted signal strength with the sensitivity of radio telescopes that can observe such radiation and calculate the observation time required for detecting neutral hydrogen at these redshifts. We find that OWFA (Ooty Wide Field Array) offers the best possibility to detect neutral hydrogen at z~3 before the SKA (Square Kilometer Array) becomes operational. We find that the OWFA should be able to make a 3 σ or a more significant detection in 2000 hours of observations at several angular scales. Calculations done using the Fisher matrix approach indicate that a 5σ detection of the binned HI power spectrum via measurement of the amplitude of the HI power spectrum is possible in 1000 h (Sarkar et al. 2017).  相似文献   

6.
7.
We report the GMRT detection of associated HI 21 cm-line absorption in thez = 1.1946 red quasar 3C 190. Most of the absorption is blue-shifted with respect to the systemic redshift. The absorption, at ~ 647.7 MHz, is broad and complex, spanning a velocity width of ~ 600 kms?1. Since the core is self-absorbed at this frequency, the absorption is most likely towards the hotspots. Comparison of the radio and deep optical images reveal linear filaments in the optical which overlap with the brighter radio jet towards the south-west. We therefore suggest that most of the HI 21 cm-line absorption could be occurring in the atomic gas shocked by the south-west jet.  相似文献   

8.
Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preliminary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signals: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that the SKA1-low should be able to detect ionized bubbles of radius \(R_{\mathrm {b}} \gtrsim 10\) Mpc with ~100 h of observations at redshift z~8 provided that the mean outside neutral hydrogen fraction \(\mathrm {x}_{\text {HI}} \gtrsim 0.5\). We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. (Nature 474, 7353 (2011)). We find that a 5σ detection is possible with 600 h of SKA1-low observations if the QSO age and the outside xHI are at least ~2×107 Myr and ~0.2 respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly- α sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total ~ 1000 h of observations, SKA1-low should be able to detect those sources individually with a ~ 9σ significance at redshift z=15. We summarize how the SNR changes with various parameters related to the source properties.  相似文献   

9.
We describe here an ongoing upgrade to the legacy Ooty Radio Telescope (ORT). The ORT is a cylindrical parabolic cylinder 530 m × 30 m in size operating at a frequency of 326.5 (or z~3.35 for the HI 21-cm line). The telescope has been constructed on a North–South hill slope whose gradient is equal to the latitude of the hill, making it effectively equatorially mounted. The feed consists of an array of 1056 dipoles. The key feature of this upgrade is the digitization and cross-correlation of the signals of every set of 4-dipoles. This converts the ORT into a 264 element interferometer with a field-of-view of 2°×27.4°cos(δ). This upgraded instrument is called the Ooty Wide Field Array (OWFA). This paper briefly describes the salient features of the upgrade, as well as its main science drivers. There are three main science drivers viz. (1) observations of the large scale distribution of HI in the post-reionization era, (2) studies of the propagation of plasma irregularities through the inner heliosphere and (3) blind surveys for transient sources. More details on the upgrade, as well as on the expected science uses can be found in other papers in this special issue.  相似文献   

10.
Reionization is thought to be dominated by low-mass galaxies, while direct observations of resolved galaxies probe only the most massive, rarest objects. The cross-correlation between fluctuations in the surface brightness of the cumulative Lyα emission (which serves as a proxy for the star formation rate) and the redshifted 21-cm signal from neutral hydrogen in the intergalactic medium (IGM) will directly probe the causal link between the production of ionizing photons in galaxies and the reionization of the IGM. We discuss the prospects for detecting this cross-correlation for unresolved galaxies. We find that on angular scales ≲10 arcmin detection will be practical using wide-field near-infrared (near-IR) imaging from space in combination with the forthcoming Mileura Wide-field Array – Low Frequency Demonstrator. When redshifted 21-cm observations of the neutral IGM are combined with space-based near-IR imaging of Lyα emission, the detection on angular scales ≲3 arcmin will be limited by the sensitivity of the 21-cm signal, even when a small-aperture optical telescope (∼2 m) and a moderate field of view (∼10 deg2) are used. On scales ≳3 arcmin, the measurement of cross-correlation will be limited by the accuracy of the foreground sky subtraction.  相似文献   

11.
Observations of fluctuations in the redshifted 21-cm radiation from neutral hydrogen (H  i ) are perceived to be an important future probe of the universe at high redshifts. Under the assumption that at redshifts   z ≤ 6  (post-reionization era) the H  i traces the underlying dark matter with a possible bias, we investigate the possibility of using observations of redshifted 21-cm radiation to detect the bispectrum arising from non-linear gravitational clustering and from non-linear bias. We find that the expected signal is ∼ 0.1  mJy at  325  MHz ( z = 3.4)  for the small baselines at the Giant Metrewave Radio Telescope, the strength being a few times larger at higher frequencies  (610 MHz, z = 1.3)  . Further, the magnitude of the signal from the bispectrum is predicted to be comparable to that from the power spectrum, allowing a detection of both in roughly the same integration time. The H  i signal is found to be uncorrelated beyond frequency separations of ∼1.3 MHz whereas the continuum sources of contamination are expected to be correlated across much larger frequencies. This signature can in principle be used to distinguish the H  i signal from the contamination. We also consider the possibility of using observations of the bispectrum to determine the linear and quadratic bias parameters of the H  i at high redshifts, this having possible implications for theories of galaxy formation.  相似文献   

12.
Extracting the neutral hydrogen(HI) signal is a great challenge for cosmological 21 cm experiments; both the astrophysical foregrounds and receiver noise are typically several orders of magnitude greater than the 21 cm signal. However, the different properties of the 21 cm signal, foreground and noise can be exploited to separate these components. The foregrounds are generally smooth or correlated over the frequency space along a line of sight(Lo S), while both the 21 cm signal and noise vary stochastically along the same Lo S. The foreground can be removed by filtering out the smooth component in frequency space. The receiver noise is basically uncorrelated for observations at different times, hence for surveys it is also uncorrelated in different directions, while the 21 cm signal, which traces the large scale structure, is correlated up to certain scales. In this exercise, we apply Wiener filters in frequency and angular space to extract the 21 cm signals. We found that the method works well. Inaccurate knowledge about the beam could degrade the reconstruction, but the overall result is still good, showing that the method is fairly robust.  相似文献   

13.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

14.
One of the scientific objectives of the Ooty Wide Field Array (OWFA) is to observe the redshifted Hi emission from z ~ 3.35. Although predictions spell out optimistic outcomes in reasonable integration times, these studies were based purely on analytical assumptions, without accounting for limiting systematics. A software model for OWFA has been developed with a view to understanding the instrument-induced systematics, by describing a complete software model for the instrument. This model has been implemented through a suite of programs, together called Prowess, which has been conceived with the dual role of an emulator as well as observatory data analysis software. The programming philosophy followed in building Prowess enables a general user to define an own set of functions and add new functionality. This paper describes a co-ordinate system suitable for OWFA in which the baselines are defined. The foregrounds are simulated from their angular power spectra. The visibilities are then computed from the foregrounds. These visibilities are then used for further processing, such as calibration and power spectrum estimation. The package allows for rich visualization features in multiple output formats in an interactive fashion, giving the user an intuitive feel for the data. Prowess has been extensively used for numerical predictions of the foregrounds for the OWFA Hi experiment.  相似文献   

15.
Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km s−1. The estimated column density of atomic Hydrogen is 0.7×1022(T s /100) cm−2. The HI absorption is redshifted by ∼400km s−1 compared to the [OIII] emission line from this system. We attribute this to an infalling cold gas or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.  相似文献   

16.
Of the many probes of reionization, the 21-cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21-cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large-scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross-correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked towards the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (ℓ∼ 100) and comes almost entirely from large physical scales ( k ∼ 10−2 Mpc). Since many of the foregrounds and noise that plague low-frequency radio observations will not correlate with CMB measurements, the cross-correlation might appear to provide a robust diagnostic of the cosmological origin of the 21-cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.  相似文献   

17.
A strong emission line at 6703 Å has been detected in the optical spectrum for the host galaxy (R = 23.1) of the radio source RC J0311+0507 (4C+04.11). This radio galaxy, with a spectral index of 1.31 in the frequency range 365–4850 MHz, is one of the ultrasteep-spectrum objects from the deep survey of a sky strip conducted with RATAN-600 in 1980–1981. We present arguments in favor of the identification of this line with Lyα at redshift z = 4.514. In this case, the object belongs to the group of extremely distant radio galaxies of ultrahigh radio luminosity (P 1400 = 1.3 × 1029 W Hz?1). Such power can be provided only by a fairly massive black hole (~109 M⊙) that formed in a time less than the age of the Universe at the observed z (1.3 Gyr) or had a primordial origin.  相似文献   

18.
Low-mass galaxies are known to have played the crucial role in the hydrogen reionization in the Universe. In this paper we investigate the contribution of soft x-ray radiation (E ~ 0.1–1 keV) from dwarf galaxies to hydrogen ionization during the initial reionization stages. The only possible sources of this radiation in the process of star formation in dwarf galaxies during the epochs preceding the hydrogen reionization epoch are hot intermediate-mass stars (M ~ 5–8 M) that entered the asymptotic giant branch (AGB) stage and massive x-ray binaries. We analyze the evolution of the intergalactic gas in the neighborhood of a dwarf galaxy with a total mass of 6 × 108M formed at the redshift of z ~ 15 and having constant star-formation rate of 0.01–0.1 M yr?1 over a starburst with a duration of up to 100 Myr. We show that the radiation from AGB stars heats intergalactic gas to above 100 K and ensures its ionization xe ? 0.03 within about 4–10 kpc from the galaxy in the case of a star-formation rate of star formation 0.03–0.1 M yr?1, and that after the end of the starburst this region remains quasi-stationary over the following 200–300 Myr, i.e., until z ~ 7.5. Formation of x-ray binaries form in dwarf galaxies at z ~ 15 results in a 2–3 and 5–6 times greater size of the ionized and heated region compared to the case where ionization is produced by AGB stars exclusively, if computed with the “x-ray luminosity–star-formation rate” dependence (LX ~ fXSFR) factor fX = 0.1 and fX ~ 1, respectively. For fX ? 0.03 the effect of x-ray binaries is smaller that that of AGB star population. Lyα emission, heating, and ionization of the intergalactic gas in the neighborhood of dwarf galaxies result in the excitation of the 21 cm HI line. We found that during the period of the starburst end at z ~11.5–12.5 the brightness temperature in the neighborhood of galaxies is 15–25 mK and the region where the brightness temperature remains close to its maximum has a size of about 12–30 kpc. Hence the epoch of the starburst end is most favorable for 21 cm HI line observations of dwarf galaxies, because at that time the size of the region of maximum brightness temperature is the greatest over the entire evolution of the dwarf galaxy. In the case of the sizes corresponding to almost 0.’1 for z ~ 12 regions with maximum emission can be detected with the Square Kilometre Array, which is currently under construction.  相似文献   

19.
Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where Galactic foreground contamination is the worst, so a key challenge is to model, quantify and remove polarized foregrounds. We use the Leiden radio surveys to quantify the polarized synchrotron radiation at large angular scales, which is likely to be the most challenging polarized contaminant for the WMAP satellite. We find that the synchrotron E- and B-contributions are equal to within 10% from 408–820 MHz with a hint of E-domination at higher frequencies. We quantify Faraday rotation and depolarization effects and show that they cause the synchrotron polarization percentage to drop both towards lower frequencies and towards lower multipoles.  相似文献   

20.
We have used the Very Large Array to image a single field in a set of adjacent frequency bands around 333.0 MHz in an attempt to detect 21 cm emission from large scale H I inhomogeneities at a redshift of z = 3.3. Following the subtraction of continuum radio sources, the absence of any spectral signals apart from that expected due to the system thermal noise has been used to derive constraints on the evolutionary scenario leading to the formation of the present day clusters of galaxies. The observations rule out the existence of H I protoclusters atz = 3.3 with masses ≃3.5 × 1014 M in H I gas and space density exceeding (74 Mpc)−3. This indicates that the present day rich clusters of galaxies either formed as gaseous protocluster condensates prior toz = 3.3 or else they formed through the clustering of their constituent galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号