首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A set of 21 solar type II radio bursts observed using Hiraiso radio spectrograph have been analysed to study the direction of propagation of coronal shocks. A simple analysis is carried out to find the approximate angle between the shock normal and magnetic field by solving the Rankine-Hugoniot MHD relation with assumption of Alfven speed and plasma beta. From this analysis, it is suggested that both quasi-parallel shocks (favourable) and quasi-perpendicular shocks can generate type II bursts depending upon the circumstances of the corona.  相似文献   

2.
The association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H, the green coronal line, and white-light coronagraphs is examined. Rather than identifying fast-moving optical coronal transients with outward-travelling shock waves that generate type II radio bursts, as has been suggested in some earlier papers, we suggest that, for the most part, such transients should probably be identified with piston-type phenomena well behind the shock. We then discuss a general model, consisting of three main velocity regimes, in which we relate type II radio bursts and coronal shocks to optically-observed ejecta.  相似文献   

3.
We study solar radio type II bursts combining with Wind/WAVES type II bursts and coronal mass ejections (CMEs). The aim of the present work is to investigate the effectiveness of shocks to cause type II bursts in the solar corona and the interplanetary space. We consider the following findings. The distribution of the cessation heights of type II emission is confined to a rather narrow range of height than the distribution of the heights of start frequencies. This is suggestive of the presence of a gradient for the Alfvén speed from the heliocentric height of ∼1.4 solar radii. The range of the kinetic energy of CMEs associated with coronal type II emission taken together with the suggested computation method and the Alfvén speed gradient, indicates the limit to the height up to which type II emission could be expected. This height is ∼2 solar radii from the center of the Sun. Further, the large time gap between the cessation time and heights of coronal type II emission and the commencement time and heights of most of the IP type II bursts do not account for the difference between the two heights and the average shock speed. Also, there is clear difference in the magnitude of the kinetic energies and the distinct characteristics of the CMEs associated with coronal and IP type II bursts. Hence, we suggest that in most instances the coronal type II bursts and IP type II bursts occur due to distinct shocks. We also address the question of the origin of type II bursts and discuss the possible explanation of observed results.  相似文献   

4.
We present observational imaging evidence for the existence of metric radio bursts closely associated with the front edge of coronal mass ejections (CMEs). These radio bursts drift in frequency similarly to type II bursts. They are weak and usually go undetected on spectrograph data. We find the same measured projected velocity for the displacement of, respectively, the radio source (when observed at two or more frequencies) and the CME leading edge. The position of the emitting source coincides with the CME leading edge. Among the events analyzed, the fastest of them, with a velocity over 1400 km s-1, was associated with interplanetary type II bursts.  相似文献   

5.
We have analyzed a set of 147 metric Type II radio bursts observed by Culgoora radio spectrograph from November 1997 to December 2006. These events were divided into two sets: The first subset contains Type II events that started during the impulsive phase of the associated solar flares and the second subset contains those starting during the decaying phase of flares. Our main aim is to differentiate the metric Type IIs, flares and coronal mass ejections (CMEs) of these two subsets. It is found that while Type II burst characteristics of both subsets are very similar, there are significant differences between flare and CME properties for these two subsets. Considering all analyzed relationships between the characteristics of Type IIs, flares and CMEs in these two Type II subsets, we conclude that most of the coronal shocks causing metric Type II bursts are driven by CMEs, but that a fraction of events are probably ignited by solar flares.  相似文献   

6.
R. T. Stewart 《Solar physics》1984,92(1-2):343-350
The homology of seven successive type II solar radio bursts, which occurred at the times of flares from an active region near the solar west limb on 1980, July 27–29, is described, together with evidence for coronal mass outflows accompanying these bursts. It is argued that homologous type II bursts imply that the corona is restructured in a similar manner by successive coronal transients.  相似文献   

7.
Combined SOHO (Solar and Helisopheric Observatory) and ground based radio observations show evidently signatures of electrons accelerated by a shock wave during the event on July 9, 1996. A solar type II radio burst has been received as a signature of a coronal shock wave at 300 MHz on 9:10:54 UT. It was accompanied with electron beams appearing as type III radio bursts below 80 MHz. Simultaneously, the COSTEP (Comprehensive Suprathermal and Energetic Particle Analyzer) instrument aboard SOHO has measured enhanced electron fluxes in the range 30 keV – 3 MeV. This indicates that a coronal shock wave was able to produce high energetic electrons. A mechanism of electron acceleration up to relativistic velocities is presented and compared with the observations. The electron acceleration takes place at substructures of quasi-parallel collisionless shocks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   

9.
A study of type II solar radio bursts recorded at 160 MHz by the Culgoora radioheliograph during 1980 to 1982 shows that the radio emission occurs above H filaments rather than above H flares. This suggests that the type II radio emission most probably originates from within a coronal helmet streamer overlying the filament channel.  相似文献   

10.
The comparison of solar radio type III bursts measured at 169 MHz with K corona observations leads to the conclusion that about 75% of the active regions over which type III bursts occur are associated with low density coronal structures. The comparison with X-ray maps of the solar disk shows that all these regions are located in low intensity regions.It is concluded that the idea generally accepted that the type III bursts are associated with dense coronal structures and travel in these structures is not at all proven for a large number of cases.  相似文献   

11.
A new digital radio spectrograph, the Madurai Solar Radio Spectrograph (MSRS), has been constructed at Madurai Kamaraj University, Madurai, India, and is being operated at the Radio Astronomy Centre, Ooty in southern India to observe solar bursts in the frequency range 30–80 MHz. The operation of the new instrument is briefly described. Observations of solar bursts by this instrument and the results from the preliminary analysis are presented.  相似文献   

12.
V. K. Verma 《Solar physics》1988,114(1):185-188
The present paper investigates the north-south asymmetry for major flares (solar cycles 19 and 20), type II radio bursts (solar cycles 19,20 and 21), white light flares (solar cycle 19,20 and 21), and gamma ray bursts, hard X-ray bursts and coronal mass ejections (solar cycle 21). The results are compared with the found asymmetry in favour of the northern hemisphere during solar cycles 19 and 20 in favour of the southern hemisphere during solar cycle 21.  相似文献   

13.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.  相似文献   

14.
Variations on short time-scales have been found in solar flares at different wavelengths. Millisecond scale radio spikes are a quickly developing area of solar radio astronomy. The solar radio astronomy group of Beijing Astronomical Observatory (BAO) has found fine structures of microwave bursts with millisecond time-scale at 2840 MHz. In this paper, we briefly summarize the observations. A joint-observation network for observing solar radio bursts with high time resolution has also been established. The equipment in the network covers a frequency domain of more than 10:1, including 1.3, 2.0, 6, 10, 15, 20 cm, and meter wavelengths. In particular, a multi-channel polarimeter with super-fast sampling (10 s) at 2600 MHz, an intensity interferometer with 1 ms sampling rate at 6 cm wavelength, and an auto-correlation radio spectrograph with 8 ms time constant at 21 cm wavelength are being established. We pay close attention to research on the spike emission features over wide bands, and their relationship to special characteristics in other spectral ranges.  相似文献   

15.
We have performed a comparative analysis of the fine structure of two decametric type II bursts observed on July 17 and August 16, 2002, with the 1024-channel spectrograph of the UTR-2 radio telescope in the frequency range 18.5–29.5 MHz and with the IZMIRAN spectrograph in the frequency range 25–270 MHz. The August 16 burst was weak, ~2–5 s.f.u., but exhibited an unusual fine structure in the form of broadband fibers (Δf e > 250–500 kHz) that drifted at a rate characteristic of type II bursts and consisted of regular narrow-band fibers (Δf e > 50–90 kHz at 24 MHz) resembling a rope of fibers. The July 17 burst was three orders of magnitude more intense (up to 4500 s.f.u. at 20 MHz) and included a similar fiber structure. The narrow fibers were irregular and shorter in duration. They differed from an ordinary rope of fibers by the absence of absorption from the low-frequency edge and by slow frequency drift (slower than that of a type II burst). Both type II bursts were also observed in interplanetary space in the WIND/WAVES RAD2 spectra, but without any direct continuation. Analysis of the corresponding coronal mass ejections (CMEs) based on SOHO/LASCO C2 data has shown that the radio source of the type II burst detected on August 16 with UTR-2 was located between the narrow CME and the shock front trailing behind that was catching up with the CME. The July 17 type II fiber burst also occurred at the time when the shock front was catching up with the CME. Under such conditions, it would be natural to assume that the emission from large fibers is related to the passage of the shock front through narrow inhomogeneities in the CME tail. Resonant transition radiation may be the main radio emission mechanism. Both events are characterized by the possible generation of whistlers between the leading CME edge and the shock front. The whistlers excited at shock fronts manifest themselves only against the background of enhanced emission from large fibers (similar to the continuum modulation in type IV bursts). The reduction in whistler group velocity inside inhomogeneities to 760 km s?1 may be responsible for the unusually low drift rate of the narrow fibers. The magnetic field inside inhomogeneities determined from fiber parameters at 24 MHz is ~0.9 G, while the density should be increased by at least a factor of 2.  相似文献   

16.
Fifteen type II solar radio events have been identified in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type II radio bursts hitherto observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 15 events have been associated with an initiating flare, ground-based radio data, the passage of a shock at the spacecraft and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type II bursts are discussed.Research Associate, University of Maryland, U.S.A.  相似文献   

17.
The phenomena observed at the Sun have a variety of unique radio signatures that can be used to diagnose the processes in the solar atmosphere. The insights provided by radio observations are further enhanced when they are combined with observations from space-based telescopes. This Topical collection demonstrates the power of combination methodology at work and provides new results on i) type I solar radio bursts and thermal emission to study active regions; ii) type II and IV bursts to better understand the structure of coronal mass ejections; and iii) non-thermal gyro-synchrotron and/or type III bursts to improve the characterisation of particle acceleration in solar flares. The ongoing improvements in time, frequency, and spatial resolutions of ground-based telescopes reveal new levels in the complexity of solar phenomena and pose new questions.  相似文献   

18.
The Rosse Solar-Terrestrial Observatory (RSTO; www.rosseobservatory.ie ) was established at Birr Castle, Co. Offaly, Ireland (53°05′38.9″, 7°55′12.7″) in 2010 to study solar radio bursts and the response of the Earth’s ionosphere and geomagnetic field. To date, three Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy in Transportable Observatory (CALLISTO) spectrometers have been installed, with the capability of observing in the frequency range of 10?–?870 MHz. The receivers are fed simultaneously by biconical and log-periodic antennas. Nominally, frequency spectra in the range of 10?–?400 MHz are obtained with four sweeps per second over 600 channels. Here, we describe the RSTO solar radio spectrometer set-up, and present dynamic spectra of samples of type II, III and IV radio bursts. In particular, we describe the fine-scale structure observed in type II bursts, including band splitting and rapidly varying herringbone features.  相似文献   

19.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.  相似文献   

20.
An analysis has been made of type III bursts recorded during a decametric solar storm observed from July 29 to August 16, 1975 with the UTR-2 antenna (Kharkov, IRE Acad. Sci. Ukr. SSR). The bursts were recorded with a dynamic spectrograph and radiometers at 25.0, 20.0, 16.7, and 12.5 MHz. Daily observations have yielded histograms of the type III burst distribution with respect to the frequency drift rate in three subbands between 25.0 and 12.5 MHz. During the middle stage of the storm the drift rate was about twice as high as at the onset and the final stage of the storm. Abrupt changes in the mean frequency drift rate were registered some two to three days after the active region McMath 13790 had come onto the limb and also before it disappeared behind the solar disk. Sudden changes in the drift rates of the type III bursts were accompanied by sudden changes of their mean duration. The rather long burst durations observed at 25.0 MHz at the beginning and the end of the radio storm coincided with such at the twice lower frequency, i.e. 12.5 MHz, during the period when an increased drift rate was observed.Similar variations of type III burst parameters can be interpreted in the framework of the plasma mechanism of burst generation in the corona, assuming that at the middle stage of the storm the bursts observed in the 25.0–12.5 MHz range were emitted at the fundamental whereas when the emitting region was near the limb the bursts received corresponded to the second harmonic of the Langmuir oscillations in the range of 12.5 to 6.25 MHz excited at greater heights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号