首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Indian subcontinent is one of the most earthquake-prone regions of the world. The Himalayas are well known for high seismic activity, and the ongoing northwards drift of the Indian plate makes the Himalaya geodynamically active. During the last three decades, several major earthquakes occurred at the plate interiors and boundaries in this subcontinent causing massive losses. Therefore, one of the major challenges in seismology has been to estimate long recurrence period of large earthquakes where most of the classical Probabilistic Seismic Hazard Approaches fail due to short catalogues used in the prediction models. Therefore, during the past few decades, the Himalayan region has been studied extensively in terms of the present ongoing displacements. In this context the present study has been carried out to estimate the surface displacement in a seismically active region of the Himalaya, in between Ganga and Yamuna Tear, using multi-temporal Synthetic Aperture Radar (SAR) Interferometry. A displacement rate of 6.2–8.2 mm/yr in N14°E direction of the Indian plate towards the Tibetan plate has been obtained. It has been noted that the estimated convergence rate using Differential SAR Interferometry technique is relatively low in comparison with those obtained from previous classical studies. The reported low convergence rate may be due to the occurrence of silent/quite earthquakes, aseismic slip, differential movement of Delhi Hardwar ridge, etc. Therefore, in view of the contemporary seismicity and conspicuous displacements, a study of long-term observations of this surface movement has been recommended in future through a time-series SAR Interferometry analysis.  相似文献   

2.
Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.  相似文献   

3.
The Himalayan mountains are a product of the collision between India and Eurasia which began in the Eocene. In the early stage of continental collision the development of a suture zone between two colliding plates took place. The continued convergence is accommodated along the suture zone and in the back-arc region. Further convergence results in intracrustal megathrust within the leading edge of the advancing Indian plate. In the Himalaya this stage is characterized by the intense uplift of the High Himalaya, the development of the Tibetan Plateau and the breaking-up of the central and eastern Asian continent. Although numerous models for the evolution of the Himalaya have been proposed, the available geological and geophysical data are consistent with an underthrusting model in which the Indian continental lithosphere underthrusts beneath the Himalaya and southern Tibet. Reflection profiles across the entire Himalaya and Tibet are needed to prove the existence of such underthrusting. Geodetic surveys across the High Himalaya are needed to determine the present state of the MCT as well as the rate of uplift and shortening within the Himalaya. Paleoseismicity studies are necessary to resolve the temporal and spatial patterns of major earthquake faulting along the segmented Himalayan mountains.  相似文献   

4.
Large landslides and deep-seated gravitational slope deformations (DSGSD) represent an important geo-hazard in relation to the deformation of large structures and infrastructures and to the associated secondary landslides. DSGSD movements, although slow (from a few millimetres to several centimetres per year), can continue for very long periods, producing large cumulative displacements and undergoing partial or complete reactivation. Therefore, it is important to map the activity of such phenomena at a regional scale. Ground surface displacements at DSGSD typically range close to the detection limit of monitoring equipment but are suitable for synthetic aperture radar (SAR) interferometry. In this paper, permanent scatterers (PSInSAR?) and SqueeSAR? techniques are used to analyse the activity of 133 DSGSD, in the Central Italian Alps. Statistical indicators for assigning a degree of activity to slope movements from displacement rates are discussed together with methods for analysing the movement and activity distribution within each landslide. In order to assess if a landslide is active or not, with a certain degree of reliability, three indicators are considered as optimal: the mean displacement rate, the activity index (ratio of active PS, displacement rate larger than standard deviation, overall PS) and the nearest neighbor ratio, which allows to describe the degree of clustering of the PS data. According to these criteria, 66% of the phenomena are classified as active in the monitored period 1992–2009. Finally, a new methodology for the use of SAR interferometry data to attain a classification of landslide kinematic behaviour is presented. This methodology is based on the interpretation of longitudinal ground surface displacement rate profiles in the light of numerical simulations of simplified failure geometries. The most common kinematic behaviour is rotational, amounting to 41 DSGSDs, corresponding to the 62.1% of the active phenomena.  相似文献   

5.
Hsieh  Chia-Sheng  Shih  Tian-Yuan  Hu  Jyr-Ching  Tung  Hsin  Huang  Mong-Han  Angelier  Jacques 《Natural Hazards》2011,58(3):1311-1332
Synthetic aperture radar (SAR) interferometry (InSAR) is a geodetic tool widely applied in the studies of earth-surface deformation. This technique has the benefits of high spatial resolution and centimetre-scale accuracy. Differential SAR interferometry (DInSAR) is used to measure ground deformation with repeat-pass SAR images. This study applied DInSAR and persistent scatterers InSAR (PSInSAR) for detecting land subsidence in the Pingtung Plain, southern Taiwan, between 1995 and 2000. In recent years, serious land subsidence occurred along coastal regions of Taiwan as a consequence of over-pumping of underground water. Results of this study revealed that the critical subsidence region is located on the coast near the estuary of Linpien River. It is also found that subsidence was significantly higher during the dry season than the wet season. The maximum annual subsidence rate of the dry season is up to −11.51 cm/year in critical subsidence region and the vertical land movement rate is much slower during the wet season. The average subsidence rates in wet and dry seasons are −0.31 and −3.37 cm/year, respectively. As a result, the subsidence rate in dry seasons is about 3 cm larger than in wet seasons.  相似文献   

6.
Two-dimensional, elastic, plane-strain, finite element model are generated to investigate the extensional structures mainly normal fault in the Annapurna region, central Himalaya. The numerical study was performed on the Miocene geologic profile considering both of the convergent displacement and rock layer properties in the regime. Results show that the normal fault primarily influenced by model geometry, rheology (layer properties) and boundary condition (applied convergence displacement). Simulated normal fault density exhibits very high intensity in Lesser Himalaya then in the Tethys Himalaya and low intensity in the Higher Himalaya, suggesting the vulnerability of fault development to low-grade metamorphic rock than the high-grade rocks. The location of normal fault predicted by the numerical model analysis is consistent to the position of normal fault segments by Kaneko (J Geol Soc Jpn 103(3):203–226, 1997). In this studies, it also believed that the presence of these normal faults and underthrusting of the sub-Himalayan sequence with associated tectonic forces, the Himalayan Metamorphic belt has been exhumed and differentially domal uplifted and then segmented into several blocks.  相似文献   

7.
The stratigraphic and tectonic setting in the northwest part of Himalayan belt is complex and thrusted due to the collision of Indian plate and the Eurasian plate. During the past, the Himalaya is divided into four parts; these are Outer Himalaya, Lesser Himalaya, Greater or Higher Himalaya and Tethys Himalaya. The appearance of basement rocks played a significant role in the Himalayan periphery for stratigraphic, structural and tectonic movement. The deformation pattern of the crustal rocks causing the rise of basement rocks which constitutes an integral part of crustal configuration during the evolutionary stages of the Himalaya. In this study, an attempt has been made to estimate the basement depth configuration using spectral analysis and Euler deconvolution technique of gravity data in the northwest Himalaya region. The elevation increases continuously from 500 m to 5100 m in SW to NE direction, however, Bouguer gravity anomaly decreases continuously from ?130 mGal to ?390 mGal in SW to NE direction due to the isostaic adjustment. Gravity anomaly is very low near Harsil, Badrinath and Joshimath area and observed higher elevation due to the deep rooted basement. However, there are extrusion of crystalline basement in and around the Badrinath area due to the resettlement of geologic process which are overlaid to the top surface of the sedimentary layers. Euler deconvolution technique has been applied to detect the direct basement depth and results show a good correlation with the average depth of the spectral analysis and other works carried by different authors. Three gravity profiles are selected in appropriate places orienting SW-NE direction with a profile length of 160 km, 150 km and 140 km respectively in the study area for calculating the average depth of the basement rock. The average basement depth calculated is around 11.27 km using the spectral analysis technique and results are well correlated with the results of various workers. Euler deconvolution studies along the three selected profiles have been interpreted. It has been observed that there are more number of cluster points falling between depth ranges of 10 to 15 km, dipping in SW to NE direction. Euler’s study shows deep rooted connection near Main Frontal Thrust (MFT), Main Boundary Thrust (MBT), Main Central Thrust (MCT), Bearing Thrust (BT) and Vaikrita Thrust (VT) locations as per profile study. Based on these studies three geological models have been prepared along the profiles showing different tectonic resettlement and depth of crystalline basement. Crystalline rocks exposed at the surface may be due to uplift along the shear in the MCT zone by kinetic flow basically, Munsiayari Thrust (MT) and VT in the of NW-Himalaya region.  相似文献   

8.
We estimate the distribution of slip in the dip section of the causative fault for the 1905 Kangra earthquake by applying the minimum norm inversion technique to differences in pre- and post-earthquake levelling data collected along the Saharanpur-Dehradun-Mussoorie highway. For this purpose it is assumed that the causative fault of the 1905 Kangra earthquake was planar with a dip of 5° in the northeast direction and that it had a depth of 6 km at the southern limit of the Outer Himalaya in Dehradun region. The reliably estimated maximum slip on the fault is 7.5 m under the local northern limit of the Outer Himalaya. Using the inverted slip distribution we estimate that the maximum permanent horizontal and vertical displacements at the surface due to the Kangra earthquake were about 4 m and 1.5m respectively. The maximum transient displacements at the surface should have exceeded these permanent displacements. These estimates of maximum slip on the causative fault and the resultant maximum permanent and transient displacements at the surface during the Kangra earthquake may be taken tentatively as being representative of the great Himalayan earthquakes.  相似文献   

9.
A major limitation for wide application of Synthetic Aperture Radar (SAR) remote sensing in mapping landslide surface displacements is the intrinsic gap between the ultimate objective of measuring three-dimensional displacements and the limited capability of detecting only one or two-dimensional displacements by repeat-pass SAR observations of identical imaging geometries. Although multi-orbit SAR observations of dissimilar viewing geometries can be jointly analyzed to inverse the three-dimensional displacements, the reliability of inversion results might be highly questionable in case of continuous motion because of the usually asynchronous acquisitions of multi-orbit SAR datasets. Aiming at this problem, we proposed an approach of retrieving time series three-dimensional displacements from multi-angular SAR datasets for step-like landslides in the Three Gorges area in this article. Firstly, time series displacements of a common ground target in the azimuth and line-of-sight (LOS) direction can be estimated using traditional methods of SAR interferometry (InSAR) and SAR pixel offset tracking (POT), respectively. Then, a spline fitting and interpolation procedure was employed to parameterize the displacement history in the sliding/dormant periods of step-like landslides and estimate displacements from multi-angular observations for identical date series. Finally, three-dimensional displacements can be inverted from these synchronized multi-angular measured displacements in traditional ways. As a case study, the proposed method was applied to retrieve the three-dimensional displacements history of the Shuping landslide in the Three Gorges area, China. Comparisons between SAR-measured displacements and measurements of global positioning system (GPS) showed good agreement. Furthermore, temporal correlation analyses suggest that reservoir water level fluctuation and rainfall are the two most important impact factors for the Shuping landslide stability.  相似文献   

10.
Recent work on long-period surface wave dispersion investigations and other geophysical work have shown that in the Himalayan and Tibet Plateau region the crust is extremely thick and the velocities are low: However, the upper mantle below Tibet appears to have normal velocities. Seismic Research Observatories, being established in the vicinity of Himalaya, will be extremely useful for near-source investigations due to their digital data acquisition capabilities and much larger dynamic range. Quantitative seismicity maps prepared for the Himalayan region are useful in comprehending regional tectonics. With international collaboration, Deep Seismic Sounding surveys have been successfully carried out in western Himalaya. It is inferred that the northern boundary of the Indian Plate does not lie along the Main Central Himalayan Thrust or the Indus Suture line, but falls very much north of the combined Indo-Tibetan block. Focal mechanism studies are, by and large, consistent with the northward thrusting of the Indian Plate. Conflicting results regarding the prevalence of isostasy in the Himalayan region have been obtained from gravity surveys. Geophysical investigations and observational facilities need to be intensified for a better understanding of the tectonics.  相似文献   

11.
The combined effects of active tectonics and anthropogenic activities, primarily geothermal resources exploitation for electricity production in Cerro Prieto geothermal field, influence the ground surface deformation in Cerro Prieto basin, Baja California, Mexico. In this study, a large set of multi-sensor C-band SAR images have been employed to reconstruct the spatiotemporal evolution of aseismic ground surface deformation that has affected Cerro Prieto basin from 1993 to 2014. Conventional DInSAR together with the interferograms stacking procedure was applied. The results showed that the study area presented considerable surface deformation (mainly subsidence) during the entire time of the investigation. The main changes in rate and pattern of surface deformation have a good correlation in time and space with the changes in production in the Cerro Prieto geothermal field. Comparison of LOS displacement maps from different viewing geometries, and decomposition (where possible) of LOS displacement into vertical and horizontal (east–west) components, revealed considerable horizontal displacement which mostly reflects the ground movement at and beyond the margin of the subsidence basin toward the areas of highest subsidence rates. In addition, the validation of the DInSAR results by comparing them against measurements from leveling surveys was performed, confirming the high reliably of satellite interferometry for the ground surface deformation rate mapping in the study area.  相似文献   

12.
The Saint-Lazare area in Paris (France) has undergone important water pumping for the construction of the underground Haussmann–Saint-Lazare station for the EOLE subway line. This paper presents the monitoring of the small surface displacements related to this pumping activity, by classical SAR interferometry. Piezometric measurements provided on 87 piezometers by SNCF and IGC as well as precise levelling data acquired on 626 points by SNCF are also examined. Their comparison with interferometric results shows their good agreement and complementarity, as well as the potential ‘operationality’ of SAR interferometric approach in such a study. To cite this article: B. Fruneau et al., C. R. Geoscience 337 (2005).  相似文献   

13.
This paper illustrates the capabilities of L-band satellite SAR interferometry for the investigation of landslide displacements. SAR data acquired by the L-band JERS satellite over the Italian and Swiss Alps have been analyzed together with C-band ERS-1/2 SAR data and in situ information. The use of L-band SAR data with a wavelength larger than the usual C-band, generally considered for ground motion measurements, reduces some of the limitations of differential SAR interferometry, in particular, signal decorrelation induced by vegetation cover and rapid displacements. The sites of the Alta Val Badia region in South Tyrol (Italy), Ruinon in Lombardia (Italy), Saas Grund in Valais (Switzerland) and Campo Vallemaggia in Ticino (Switzerland), representing a comprehensive set of different mass wasting phenomena in various environments, are considered. The landslides in the Alta Val Badia region are good examples for presenting the improved performance of L-band in comparison to C-band for vegetated areas, in particular concerning open forest. The landslides of Ruinon, Saas Grund, and Campo Vallemaggia demonstrate the strength of L-band in observing moderately fast displacements in comparison to C-band. This work, performed with historical SAR data from a satellite which operated until 1998, demonstrates the capabilities of future planned L-band SAR missions, like ALOS and TerraSAR-L, for landslide studies.  相似文献   

14.
A balanced cross-section along the Budhi-Gandaki River in central Nepal between the Main Central thrust, including displacement on that fault, and the Main Frontal thrust reveals a minimum total shortening of 400 km. Minimum displacement on major orogen-scale structures include 116 km on the Main Central thrust, 110 km on the Ramgarh thrust, 95 km on the Trishuli thrust, and 56 km in the Lesser Himalayan duplex. The balanced cross-section was also incrementally forward modeled assuming a generally forward-breaking sequence of thrusting, where early faults and hanging-wall structures are passively carried from the hinterland toward the foreland. The approximate correspondence of the forward modeled result to observe present day geometries suggest that the section interpretation is viable and admissible. In the balanced cross-section, the Trishuli thrust is the roof thrust for the Lesser Himalayan duplex. The forward model and reconstruction emphasize that the Lesser Himalayan duplex grew by incorporating rock from the footwall and transferring it to the hanging wall along the Main Himalayan thrust. As the duplex developed, the Lesser Himalayan ramp migrated southward. The movement of Lesser Himalayan thrust sheets over the ramp pushed the Lesser Himalayan rock and the overburdens of the Greater and Tibetan Himalayan rock toward the erosional surface. This vertical structural movement caused by footwall collapse and duplexing, in combination with erosion, exhumed the Lesser Himalaya.  相似文献   

15.
Belonechitina capitata, a typically middle to late Ordovician chitinozoan index taxon was for the first time recovered from the northeastern Kumaon region, a part of Garhwal-Kumaon Tethys basin of the Himalaya, India. This species is of great biostratigraphic importance and has already been reported from Avalonia, Baltica and northern Gondwana. The study area was during Ordovician, part of a lowpalaeolatitudinal Gondwana region. The vesicles of recovered forms are black and fragmentary. This is principally attributed to intense tectonic activity during the Himalayan orogenic movement which resulted into high thermal alteration. The chitinozoans are found along with melanosclerites.  相似文献   

16.
利用ENVISAT/ASAR和ALOS/PALSAR数据,结合两路差分干涉测量技术获得了汶川地震的同震形变信息和震前、震后地面在卫星视线(light of sight,简称LOS)方向上的形变特征。结果表明,汶川地震引起的地面形变范围广,程度大,地震形变沿断层向北北东向扩展,所形成的差分干涉条纹明显。地面的形变特征对于推断断层的性质,研究地震形变和地震发育特征具有重要的参考价值。另外,将同震雷达差分干涉测量的结果与利用USGS发布的汶川地震有限元断层模型(finite fault model)反演的LOS方向的形变进行了对比验证,发现二者在断裂带的上盘具有较好的一致性,但在下盘却有较大的误差。通过不同传感器干涉结果的对比发现,L波段的雷达干涉结果更能够反映汶川大地震在龙门山断裂带附近的地面形变信息。  相似文献   

17.
A programme of Venice uplift because of seawater injection into a 600–800 m deep brackish aquifer underlying the lagoon has recently been advanced. As the actual spatial variability of the hydro‐geological parameters is to a large extent unknown, a controversial issue concerns the 25–30 cm heave prediction with the possible generation of differential displacements that might jeopardize the integrity of the architectural patrimony. It is shown that significant differential displacements have occurred in Venice in the past and are still presently occurring as evidenced by SAR interferometry. The results of a stochastic analysis addressing the variability of the hydraulic conductivity of the injected formation indicate that even a highly uneven aquifer expansion does not migrate to ground surface because of the smoothing effect exerted by the overburden. The predicted differential displacements are well below the values Venice is experiencing. Any a priori alarmism appears to be unfounded and unjustified.  相似文献   

18.
Differential synthetic aperture radar interferometry (D-InSAR) has become a useful technique for monitoring ground movement. The technique enables the analysis of very small ground movements in continuous, large areas and has the advantages of high accuracy, high resolution, all-weather adaptability, low cost, and inaccessible area coverage. Thus, D-InSAR has been widely used in the investigation of geologic hazards, such as subsidence, landslide, earthquake, and volcanic activity. In this paper, D-InSAR is used to locate and monitor landslide movement in the wide area of Wudongde Hydropower Reservoir in Jinsha River, China. Five SAR acquisitions are obtained by using the phased array-type L-band synthetic aperture radar sensor of the Advanced Land Observing Satellite. Detailed moving displacement maps in two time periods are derived by using the D-InSAR technique, and potentially moving landslide areas, as well as landslide hazard areas, are then located. The L1R-6 landslide, which is in active state, is investigated in detail. The deforming tendency obtained via D-InSAR is consistent with that obtained via global positioning system (GPS) monitoring. Error analysis of the D-InSAR results is also conducted. Finally, the grid function interpolation method of error reduction, which combines D-InSAR and GPS, is proposed to reduce the single-point error in D-InSAR monitoring and is further verified by the considerable improvement in the accuracy of L1R-6 landslide monitoring.  相似文献   

19.
Seismicity along the Himalayan front is mostly attributed to the processes of collision between the Indian and the Eurasian plates resulting in the under-thrusting of the Indian Peninsula underneath the Himalaya. The dynamics of the region bears very complex components which require in-depth understanding. Here the overall rate of crustal shortening since ∼ 11 Ma is ∼ 21mm/yr, which is comparable to modern rate of under-thrusting of the northern Indian plate beneath the Himalaya. The region experienced a large number of great earthquakes for the last 100–120 years causing massive destruction. Here an attempt has been made to understand the seismicity pattern of the region using fractal correlation dimension and hence used for the detection of active seismicity. Some clusters of seismicity were found to be indicative of seismically very active zones. Such clusters may enlighten the understanding of recent complex dynamics of Himalayan zone.  相似文献   

20.
Himalayan seismicity is related to continuing northward convergence of Indian plate against Eurasian plate. Earthquakes in this region are mainly caused due to release of elastic strain energy. The Himalayan region can be attributed to highly complex geodynamic process and therefore is best suited for multifractal seismicity analysis. Fractal analysis of earthquakes (mb ?? 3.5) occurred during 1973?C2008 led to the detection of a clustering pattern in the narrow time span. This clustering was identified in three windows of 50 events each having low spatial correlation fractal dimension (D C ) value 0.836, 0.946 and 0.285 which were mainly during the span of 1998 to 2005. This clustering may be considered as an indication of a highly stressed region. The Guttenberg Richter b-value was determined for the same subsets considered for the D C estimation. Based on the fractal clustering pattern of events, we conclude that the clustered events are indicative of a highly stressed region of weak zone from where the rupture propagation eventually may nucleate as a strong earthquake. Multifractal analysis gave some understanding of the heterogeneity of fractal structure of the seismicity and existence of complex interconnected structure of the Himalayan thrust systems. The present analysis indicates an impending strong earthquake, which might help in better hazard mitigation for the Kumaun Himalaya and its surrounding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号