首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Deep circulation in the southwestern East/Japan Sea through the Ulleung Interplain Gap (UIG), a possible pathway for deep-water exchange, was directly measured for the first time. Five concurrent current meter moorings were positioned to effectively span the UIG between the islands of Ulleungdo to the west and Dokdo to the east. They provided a 495-day time series of deep currents below 1800 m depth spanning the full breadth of the East Sea Deep and Bottom Water flowing from the Japan Basin into the Ulleung Basin. The UIG circulation is found to be mainly a two-way flow with relatively weak southward flows directed into the Ulleung Basin over about two-thirds of the western UIG. A strong, persistent, and narrow compensating northward outflow occurs in the eastern UIG near Dokdo and is first referred to here as the Dokdo Abyssal Current. The width of the abyssal current is about 20 km below 1800 m depth. The low-frequency variability of the transports is dominated by fluctuations with a period of about 40 days for inflow and outflow transports. The 40-day fluctuations of both transports are statistically coherent, and occur almost concurrently. The overall mean transport of the deep water below 1800 m into the Ulleung Basin over the 16.5 months is about 0.005 Sv (1 Sv=106 m3 s?1), with an uncertainty of 0.025 Sv indicating net transport is negligible below 1800 m through the UIG.  相似文献   

2.
Observations of topographic Rossby waves (TRW), using moored current meters, bottom pressure gauges, and Lagrangian RAFOS floats, are investigated for the deep basin of the Gulf of Mexico. Recent extensive measurement programs in many parts of the deep gulf, which were inspired by oil and gas industry explorations into ever deeper water, allow more comprehensive analyses of the propagation and dissipation of these deep planetary waves. The Gulf of Mexico circulation can be divided into two layers with the ∼800-1200 m upper layer being dominated by the Loop Current (LC) pulsations and shedding of large (diameters ∼300-400 km) anticyclonic eddies in the east, and the translation of these LC eddies across the basin to the west. These processes spawn smaller eddies of both signs through instabilities, and interactions with topography and other eddies to produce energetic surface layer flows that have a rich spectrum of orbit periods and diameters. In contrast, current variability below 1000 m often has the characteristics of TRWs, with periods ranging from ∼10-100 days and wavelengths of ∼50-200 km, showing almost depth-independent or slightly bottom intensified currents through the weakly stratified lower water column. These fluctuations are largely uncorrelated with simultaneous upper-layer eddy flows. TRWs must be generated through energy transfer from the upper-layer eddies to the lower layer by potential vorticity adjustments to changing depths of the bottom and the interface between the layers. Therefore, the LC and LC eddies are prime candidates as has been suggested by some model studies. Model simulations have also indicated that deep lower-layer eddies may be generated by the LC and LC eddy shedding processes.In the eastern gulf, the highest observed lower-layer kinetic energy was north of the Campeche Bank under the LC in a region that models have identified as having strong baroclinic instabilities. Part of the 60-day TRW signal propagates towards the Sigsbee Escarpment (a steep slope at the base of the northern continental slope), and the rest into the southern part of the eastern basin. Higher energy is observed along the escarpment between 89°W and 92°W than either under the northern part of the LC or further south in the deep basin, because of radiating TRWs from the western side of the LC. In the northern part of the LC, evidence was found in the observations that 20-30-day TRWs were connected with the upper layer through coherent signals of relative vorticity. The ∼90° phase lead of the lower over the upper-layer relative vorticity was consistent with baroclinic instability. Along the Sigsbee Escarpment, the TRWs are refracted and reflected so that little energy reaches the lower continental slope and a substantial mean flow is generated above the steepest part of the escarpment. RAFOS float tracks show that this mean flow continues along the escarpment to the west and into Mexican waters. This seems to be a principal pathway for deepwater parcels to be transported westward. Away from the slope RAFOS floats tend to oscillate in the same general area as if primarily responding to the deep wave field. Little evidence of westward translating lower-layer eddies was found in both the float tracks and the moored currents. In the western gulf, the highest deep energy levels are much less than in the central gulf, and are found seaward of the base of the slope. Otherwise, the situation is similar with TRWs propagating towards the slope, probably generated by the local upper-layer complex eddy field, being reflected and forcing a southward mean flow along the base of the Mexican slope. Amplitudes of the lower-layer fluctuations decay from the northwest corner towards the south.  相似文献   

3.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-term current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.  相似文献   

5.
On the basis of hydrographic data and moored current meter records obtained during an early summer cruise (May 20–June 23) of 1986, a three dimensional diagnostic calculation of the circulation is performed in the survey area, which covers the East China Sea continental shelf, Okinawa Trough and an area east of the Ryukyu Island. The Kuroshio Current condition and structure in the East China Sea, its branches and their interrelationship as well as the eddies around the Kuroshio, are discussed. When the Kuroshio entered the area northeast of Taiwan, there were two branches. The main branch flowed northeastward along the continental slope and the other branch was at the eastern part of the Okinawa Trough. The main axis of the Kuroshio followed the continental slope above the 300 m level, but moved gradually eastward to the Okinawa Trough below the 300 m level.  相似文献   

6.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

7.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   

8.
By using a rectangular basin of uniform depth with inflow and outflow openings, the circulation in the Japan Sea is investigated numerically. Heat flux through the sea surface is determined from the annual mean atmospheric conditions for the Japan Sea, but no wind stress is considered.In the transient state, the warm water supplied through an inflow opening travels cyclonically along the coast as a density-driven boundary current in a rotating system. In the quasi-steady state, the warm water flows northward as a western boundary current which corresponds to the East Korean Warm Current and gradually separates from the coast as it flows northward. No strong boundary current corresponding to the nearshore branch of the Tsushima Current exists.Under annual mean atmospheric conditions, formation of the deep water characteristic of the Japan Sea and of the thermal front corresponding to the Polar Front do not take place.  相似文献   

9.
The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean׳s role in climate.  相似文献   

10.
东海北部气旋涡区冬半年水文特征的初步分析   总被引:3,自引:0,他引:3       下载免费PDF全文
关于东海北部气旋涡区夏半年水文结构及其逐月变化,作者已作了比较系统的分析。本文是上述工作的继续。鉴于冬半年海水的温、盐度等要素垂直分布均匀,其结构简单,而夏半年几个突出的水文现象大多没有出现,因此,本文叙述的方式和内容同前文是不同的。 迄今,只有毛汉礼等(1964)曾对研究海区冬季的水文特征以及海水类型作过分析,但对这一海区的水文特征在冬半年的变化规律尚未见报道。历史资料表明,该海区在冬  相似文献   

11.
The Current System in the Yellow and East China Seas   总被引:18,自引:1,他引:18  
During the 1990s, our knowledge and understanding of the current system in the Yellow and East China Seas have grown significantly due primarily to new technologies for measuring surface currents and making high-resolution three-dimensional numerical model calculations. One of the most important new findings in this decade is direct evidence of the northward current west of Kyushu provided by satellite-tracked surface drifters. In the East China Sea shelf region, these recent studies indicate that in winter the Tsushima Warm Current has a single source, the Kuroshio Branch Current in the west of Kyushu, which transports a mixture of Kuroshio Water and Changjiang River Diluted Water northward. In summer the surface Tsushima Warm Current has multiple sources, i.e., the Taiwan Warm Current, the Kuroshio Branch Current to the north of Taiwan, and the Kuroshio Branch Current west of Kyushu. The summer surface circulation pattern in the East China Sea shelf region changes year-to-year corresponding to interannual variations in Changjiang River discharge. Questions concerning the Yellow Sea Warm Current, the Chinese Coastal Current in the Yellow Sea, the current field southwest of Kyushu, and the deep circulation in the Okinawa Trough remain to be addressed in the next decade. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
In the southwestern part of the Okhotsk Sea, oceanographic and sea-ice observations on board the icebreaker Soya were carried out in February 1997. A mixed layer of uniform temperature nearly at the freezing point extending down to a depth of about 300 m was observed. This is much deeper than has previously been reported. It is suggested that this deep mixed layer originated from the north (off East Sakhalin), being advected along the shelf slope via the East Sakhalin Current, accompanied with the thick first-year ice (average thickness 0.6 m). This vertically uniform winter water, through mixing with the surrounding water, makes the surface water more saline (losing a characteristic of East Sakhalin Current Water) and the water in the 100–300 m depth zone less saline, colder, and richer in oxygen (a characteristic of the intermediate Okhotsk Sea water). The oceanographic structure and a heat budget analysis suggest that new ice zone, which often appears at ice edges, can be formed through preconditioning of thick ice advection and subsequent cooling by the latent heat release due to its melting. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
This is the first detailed study on the distribution of lead-210 in the Japan Sea water. The content of lead-210 ranged from 9.3±2.1 dph/l in the surface water to 3.4+-0.8 dph/l in the deep water—a quite low content as compared to that in the deep water of the North Pacific. Vertical profiles show that the content of lead-210 abruptly decreases below the seasonal thermocline (10–20 m in depth) and nearly uniform in the deep water. It is suggested that a significant amount of air-borne lead-210 deposited over the Japan Sea is transported along with the Tsushima Current to the open ocean. The budget of lead-210 is calculated by using a simple box-model and the mean residence time of lead-210 in the Japan Sea is estimated to be 15 yr.  相似文献   

14.
综合分析黑潮、南海暖流、黄海冷水团、对马暖流、闽浙沿岸流、粤东沿岸流、季风和径流对中国近海影响的季节性差异,从而导致中国近海浮游介形类的群落生境地理位置随之进行季节性的变迁。本文选择差异甚大的夏、冬两季进行分析。  相似文献   

15.
A significant surface net heat loss appears around the Kuroshio and the Tsushima Warm Current regions. The area where the surface heat loss occurs should require heat to be supplied by the current to maintain the long-term annual heat balance. Oceanic heat advection in these regions plays an important role in the heat budget. The spatial distribution of the heat supply by the Tsushima Warm Current near the surface was examined by calculating the horizontal heat supply in the surface layer of the East Sea (the Japan Sea) (ESJS), directly from historical sea surface temperature and current data. We have also found a simple estimation of the effective vertical scale of heat supply by the current to compensate net heat loss using the heat supplied by the current in the surface 10 m layer. The heat supplied by the current for the annual heat balance was large in the Korea/Tsushima Strait and along the Japanese Coast, and was small in the northwestern part of the ESJS. The amount of heat supplied by the current was large in the northwestern part and small in the south-eastern part of the ESJS. These features suggest that the heat supplied by the Tsushima Warm Current is restricted to near the surface around the northeastern part and extends to a deeper layer around the southeastern part of the ESJS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The most plausible scenarios for seasonal to interannual variabilities and their possible causes are investigated for the Tsushima Current system passing through the Japan Sea. The study is based on the north and south two-box model across the polar front in an idealized upper ocean of the Japan Sea. The boxes are connected by lateral diffusive heat transport and cooled by atmospheric forcing at the annual mean state. The south box, i.e. the Tsushima Current region, only interacts with the outside warmer box in the East China Sea and has an eastward thermal-driven current originating in the outside box. The magnitude of this current depends on the strength of the thermal gradient between the north and south boxes; the inflow of warm waters can therefore be maintained by net heat loss through the sea-surface. I call such a thermal-driven inflow process a "Cooling-Induced Current" system in the present study. Under periodical heat forcing, the perturbation response of the model to water temperature fields and inflow transport were examined. It is shown that the lateral diffusion time across the polar front (over a period of 10 years) is crucial to the interannual modeled response. An analysis of the seasonal heat budget suggests that the heat transported into the Japan Sea from the East China Sea in summer is stored mainly within the Tsushima Current region and contributes to heat loss by the sea-surface cooling in winter.  相似文献   

17.
The vertical structure of low-frequency flows in the central Ulleung Interplain Gap of the southwestern East Sea (Sea of Japan) is analyzed based on full-depth current measurement during November 2002–April 2004. Record-length mean flows are directed toward the Ulleung Basin (Tsushima Basin) throughout the entire water column. Upper current variability above the permanent thermocline with a dominant period of about 50–60 days is shown to be closely related to the displacement of an anticyclonic warm eddy associated with the westward meander of the Offshore Branch. Fluctuations of deep currents below the permanent thermocline have a dominant period of about 40 days. Coherence between the current near the seabed and shallower depths is statistically significant up to 360 m for a period range between 15 and 100 days, but less significantly correlated with currents in the upper 200 m. Data from the densely equipped mooring line reveal that mean and eddy kinetic energies are minima at 1000 m, where isotherm slopes are also relatively flat. Empirical orthogonal function (EOF) analyses suggest that more than 79% of total variances of upper and deep currents can be explained by their respective first EOF mode characterized by nearly depth-independent eigenvectors. Spectral and EOF analyses of observed currents suggest that most of the deep current variability is not directly related to local upper current variability during the observation period.  相似文献   

18.
简要介绍了黄海和东海的地理环境概况,着重分析调查海域的环流系统。有如下一些初步看法与结论。 台湾暖流的前缘混合水,可从长江冲淡水底层穿越而影响到苏北沿岸,直到32°N以北的浅水区域。对马暖流西侧的水体是东海混合水,而其东侧为黑潮分支。黄海暖流的流向在不同季节具有规律的摆动。黄海底层冷水团属于季节性水团,其强盛及消衰与温跃层的形成及消亡紧密相关。黄海底层冷水团与中部底层冷水并非每年彼此独立,它们的共同特征甚至比其差异更明显。夏季东海冷水不能借助爬升侵入黄海底层冷水团内部。在济州岛南部区域,中层的逆温、逆盐现象,是由黄海密度环流的扩散效应与东海冷水沿黄海底层冷水团边界的爬升这两个原因而形成的。  相似文献   

19.
黄亚楠 《海洋学报》2022,44(11):77-87
本文对东海及毗邻海域中239+240Pu比活度、240Pu/239Pu原子比值和239+240Pu累积通量或沉积通量数据进行整理,首次从大气沉降、海水中、生物体中、沉积物捕获器中以及沉积物中的239+240Pu 5个方面阐述了东海及毗邻海域中239+240Pu的地球化学行为。研究结果表明,全球大气沉降和太平洋核试验场输入的239+240Pu是东海海水和沉积物中239+240Pu的两个主要来源;在长江径流、浙闽沿岸流、台湾暖流、黑潮与上升流等水团的混合作用以及清除作用的影响下,东海近岸海水中239+240Pu浓度在时间上呈现被清除而减少的趋势,相应近岸浅水区沉积物中239+240Pu的埋藏深度高于远岸深水海域。在黑潮入侵和上升流的作用下,冲绳海槽区尤其是台湾岛东北部,沉积物中的239+240Pu比活度与沉积通量显著增大。同时,利用东海表层沉积物中239+240Pu比活度和240Pu/239Pu原子比值的相关关系证实了台湾东北部黑潮底层分支流的存在,并指示出台湾暖流与黑潮底层分支流可能交汇的海域位置。  相似文献   

20.
依据黄、东海环流的的动力学模型 ,运用“流速分解法”对黄、东海正压环流进行了数值模拟。计算结果表明冬季黄海正压环流主要受风应力影响 ,基本形态为黄海暖流由济州岛西南进入南黄海中部 ,其东西两侧分别为两支向南流动的沿岸流 ;夏季主要受到潮致体力的影响 ,为一逆时针涡旋。东海环流主要是边界力作用驱动的结果 ,东海黑潮、台湾暖流和对马暖流较稳定。冬季风应力对东海环流表层流场有消弱作用 ,在夏季则有一定增强作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号