首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Systematic water sampling for characterization of chromophoric dissolved organic matter (CDOM) in the coastal South Atlantic Bight, was conducted as part of the long term Coastal Ocean Research and Monitoring Program (CORMP). Water samples were collected during a 3.5 year period, from October 2001 until March 2005, in the vicinity of the Cape Fear River (CFR) outlet and in adjacent Onslow Bay (OB). During this study there were two divergent hydrological and meteorological conditions in the CFR drainage area: a severe drought in 2002, followed by the very wet year of 2003. CDOM was characterized optically by the absorption coefficient at 350 nm, the spectral slope coefficient (S), and by Excitation Emission Matrix (EEM) fluorescence. Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra and six components were identified: three terrestrial humic-like components, one marine humic-like component and two protein-like components. Terrestrial humic-like components contributed most to dissolved organic matter (DOM) fluorescence in the low salinity plume of the CFR. The contribution of terrestrial humic-like components to DOM fluorescence in OB was much smaller than in the CFR plume area. Protein-like components contributed significantly to DOM fluorescence in the coastal ocean of OB and they dominated DOM fluorescence in the Gulf Stream waters. Hydrological conditions during the observation period significantly impacted both concentration and composition of CDOM found in the estuary and coastal ocean. In the CFR plume, there was an order of magnitude difference in CDOM absorption and fluorescence intensity between samples collected during the drought compared to the wet period. During the drought, CDOM in the CFR plume was composed of equal proportions of terrestrial humic-like components (ca. 60% of the total fluorescence intensity) with a significant contribution of proteinaceous substances (ca. 20% of the total fluorescence). During high river flow, CDOM was composed mostly of humic substances (nearly 75% of total fluorescence) with minor contributions by proteinaceous substances. The impact of changes in fresh water discharge patterns on CDOM concentration and composition was also observed in OB, though to a lesser degree.  相似文献   

2.
The distribution and characteristics of coloured dissolved organic matter (CDOM) in the Baltic – North Sea transition zone were studied. The aim was to assess the validity of predicting CDOM absorption in the region on the basis of water mass mixing alone and demonstrate the utility of CDOM as an indicator of water mass mixing in coastal seas. A three-end-member mixing model representing the three major allochthonous CDOM sources was sufficient to describe the patterns in CDOM absorption distribution observed. The three-end-member water masses were the: Baltic outflow, German Bight and the central North Sea. Previously, it was thought that water from the German Bight transported northwards in the Jutland coastal current only sporadically influenced mixing between the Baltic and North Sea. The results from this study show that water from the German Bight is detectable at salinities down to 12 in the Kattegat and Belt Sea. On average, 23% of the CDOM in bottom waters of the Kattegat, Great Belt, Belt Sea, Arkona Sea and the Sound originated from the German Bight. Using this conservative mixing model approach, local CDOM inputs were detectable but found to be limited, representing only 0.25% of CDOM in the surface waters of the Kattegat and Belt Sea. The conservative mixing of CDOM makes it possible to predict its distribution and characteristics and offers a powerful tool for tracing water mass mixing in the region. The results also emphasize the need to include the Jutland Coastal current in hydrodynamic models for the region.  相似文献   

3.
In this study, the CDOM absorption coefficient at 350 nm [aCDOM(350)] and CDOM excitation emission matrix (EEM) fluorescence were used to estimate annual fluxes of dissolved organic carbon (DOC) from the Cape Fear River to Long Bay in the South Atlantic Bight. Water samples were collected during a 3.5 year period, from October 2001 through March 2005, in the vicinity of the Cape Fear River (CFR) outlet and adjacent Onslow Bay (OB). Parallel factor analysis (PARAFAC) of CDOM EEM spectra identified six components: three terrestrial humic-like, one marine humic-like and two protein-like. Empirical relationships were derived from the PARAFAC model between DOC concentration and aCDOM(350), total fluorescence intensity and the intensities of respective EEM components. DOC concentration and CDOM optical parameters were very well correlated and R2 values ranged from 0.77 to 0.90. Regression analyses revealed that the non-absorbing DOC fraction, in DOC concentration estimated from CDOM optical parameters, varied with the qualitative composition of the CDOM. DOC concentration and intensity of the humic-like CDOM components characterized by excitation maxima at longer wavelengths have significantly higher estimated non-absorbing DOC compared to the analogous relationships between DOC and intensity of the humic-like CDOM components characterized by excitation maxima at shorter wavelengths. The relationships between DOC concentration and intensity of one of the protein-like components resulted in significantly reduced non-absorbing DOC fraction in DOC concentration estimation. Results of regression analyses between fluorescence intensities of specific EEM components and CDOM-specific absorption coefficients suggest that the relative proportion of humic-like CDOM components (characterized by excitation maximum at longer wavelengths) and the main protein-like component have the most impact on the values of a?CDOM(350). Based on the relationships between aCDOM(350), Cape Fear River flow, and DOC concentrations, DOC fluxes were estimated for 2002, 2003 and 2004. DOC fluxes varied from 1.5 to 6.2 × 1010 g C yr? 1, depending on river flow.  相似文献   

4.
Dissolved organic matter(DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloidal organic matter(COM; 10 kDa–0.22 μm) retentate, low molecular weight(LMW) DOM(10 kDa) permeate, and bulk samples were analyzed using absorption spectroscopy and three-dimensional fluorescence excitation-emission-matrix spectroscopy. The UV-visible spectra of COM were very similar to those obtained for permeate and bulk samples, decreasing monotonically with increasing wavelength. Most of the chromophoric DOM(CDOM, expressed as the absorption coefficient a355) occurred in the LMW fraction, while the percentage of CDOM in the colloidal fraction was substantially higher in the freshwater endmember(13.4% of the total) than in the seawater endmember(6.8%). The bulk CDOM showed a conservative mixing behavior in the estuary, while there was removal of the COM fraction and a concurrent addition of the permeate fraction in the mid-salinity sample, implying that part of the colloidal CDOM was transformed into LMW CDOM. Two humic-like components(C1: 250, 325/402 nm; and C2: 265, 360/458 nm) and one protein-like component(C3: 275/334 nm) were identified using parallel factor analysis. The contributions of the C1, C2, and C3 components of the COM fraction to the bulk sample were 2.5%–8.7%, 4.8%–12.6%, and 7.4%–14.7%, respectively, revealing that fluorescent DOM occurred mainly in the LMW fraction in the Jiulong River Estuary. The C1 and C2 components in the retentate and permeate samples showed conservative mixing behavior, but the intensity ratio of C2/C1 was higher in the retentate than in the permeate fractions for all salinity samples, showing that the humic component was more enriched in the COM than the fulvic component. The intensity ratio of C3/(C1+C2) was much higher in the retentate than in the permeate fraction for mid-salinity and seawater samples, revealing that the protein-like component was relatively more enriched in COM than the humic-like component. The contribution of the protein-like component(C3) to the total fluorescence in the retentate increased from 14% in the freshwater endmember to 72% for the seawater endmember samples, clearly indicating the variation of dominance by the humic-like component compared to the protein-like component during the estuarine mixing process of COM.  相似文献   

5.
The southern Changjiang River Estuary has attracted considerable attention from marine scientists because it is a highly biologically active area and is biogeochemically significant.Moreover,land-ocean interactions strongly impact the estuary,and harmful algal blooms(HABs) frequently occur in the area.In October 2010 and May 2011,water samples of chromophoric dissolved organic matter(CDOM) were collected from the southern Changjiang River Estuary.Parallel factor analysis(PARAFAC) was used to assess the samples' CDOM composition using excitation-emission matrix(EEM) spectroscopy.Four components were identified:three were humic-like(C1,C2 and C3) and one was protein-like(C4).Analysis based on spatial and seasonal distributions,as well as relationships with salinity,Chl a and apparent oxygen utilization(AOU),revealed that terrestrial inputs had the most significant effect on the three humic-like Components C1,C2 and C3 in autumn.In spring,microbial processes and phytoplankton blooms were also important factors that impacted the three components.The protein-like Component C4 had autochthonous and allochthonous origins and likely represented a biologically labile component.CDOM in the southern Changjiang River Estuary was mostly affected by terrestrial inputs.Microbial processes and phytoplankton blooms were also important sources of CDOM,especially in spring.The fluorescence intensities of the four components were significantly higher in spring than in autumn.On average,C1,C2,C3,C4 and the total fluorescence intensity(TFI) in the surface,middle and bottom layers increased by123%–242%,105%–195%,167%–665%,483%–567% and 184%–245% in spring than in autumn,respectively.This finding corresponded with a Chl a concentration that was 16–20 times higher in spring than in autumn and an AOU that was two to four times lower in spring than in autumn.The humification index(HIX) was lower in spring that in autumn,and the fluorescence index(FI) was higher in spring than in autumn.This result indicated that the CDOM was labile and the biological activity was intense in spring.  相似文献   

6.
Vertical attenuation of light through the water column (Kd) is attributable to the optically active components of phytoplankton, suspended particulate material (SPM) and chromophoric dissolved organic matter (CDOM). Of these, CDOM is not routinely monitored and was the main focus of this study. Concentrations and spatio-temporal patterns of CDOM fluorescence were investigated between August 2004 and March 2006, to quantify the correlation coefficient between CDOM and salinity and to better characterise the contribution of CDOM to Kd. Sampling was conducted at a broad range of UK and Republic of Ireland locations; these included more than 15 estuaries, 30 coastal and 70 offshore sites in the southern North Sea, Irish Sea, Liverpool Bay, Western Approaches and the English Channel.An instrument package was used; a logger with multi-sensor array was deployed vertically through the water column and concurrent water samples were taken to determine salinity, CDOM fluorescence and SPM. Surface CDOM fluorescence values ranged between 0.05 and 16.80 S.Fl.U. (standardised fluorescence units). A strong, negative correlation coefficient of CDOM to salinity (r2 = 0.81) was found. CDOM absorption (aCDOMλ) was derived from fluorescence measurements and was in the range 0.02–2.2 m1 with mean 0.15 m1. These results were comparable with direct measurements of aCDOMλ in the same geographic regions, as published by other workers.Spatial differences in CDOM fluorescence were generally explicable by variation in salinity, in local conditions or catchment areas; e.g. CDOM at the freshwater end was 3.54–11.30 S.Fl.U., reflecting the variety of rivers sampled and their different catchments. Temporal changes in CDOM fluorescence were related to salinity. A significant and positive correlation was found between CDOM and Kd, and although CDOM was found to be less influential than SPM on Kd, it was still of significance particularly in coastal and offshore waters of lower turbidity.  相似文献   

7.
Absorption and fluorescence of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measurements were performed during three oceanographic surveys in 1994 in the southern Baltic Sea (Polish area of the Baltic Proper). DOC was measured both by high-temperature catalytic oxidation (HTCO) and low-temperature oxidation (LTO) conventional persulphate methods. CDOM fluorescence was shown to be highly correlated with absorption, with the same regression parameters, despite the seasonal change in different hydrographic conditions and the fluorescence quantum yield variations (1.23 ± 0.07 in April and 0.97 ± 0.12 in September). The results show a good correlation between the optical parameters and DOC although ˜ 70% of the DOC does not display significant absorption in the UV-visible range (350–750 nm). The non-absorbing DOC measured with HTCO method appears unaffected by seasonal changes. Consequently, total DOC can be predicted by optical methods using remote sensing techniques. The non-absorbing DOC measured by LTO method varies from 62% (April) to 76% (September), which implies that there is requirement for estimates on a seasonal basis.  相似文献   

8.
Onega Bay waters are characterized by a high content of chromophoric dissolved organic matter (CDOM). The absorbance spectra and fluorescence intensity (excitation wavelength 455 nm, emission wavelength >680 nm) were used to assess the distribution of CDOM content in water filtered through a GF/F filter. The CDOM content at different points in Onega Bay showed more than a fourfold difference, as inferred from the measured values. The CDOM content in surface waters was, as a rule, higher than in the deeper horizons. A higher CDOM content was measured near the Onega River, near the middle part of the Onega shore, and near the Pomor shore opposite the town of Belomorsk. River runoff is the major source of CDOM in Onega Bay water. The CDOM chemical composition in Onega Bay waters was heterogeneous. The ratio of the fluorescence intensity to the absorbance value was higher near the mouths of rivers and in intensive mixing zones than in water characterized by high salinity. A highly significant linear correlation (R2 = 0.7825) between water salinity and CDOM fluorescence intensity was demonstrated. The contribution of fluorescent compounds to river runoff CDOM is substantially higher than the contribution to the composition marine CDOM.  相似文献   

9.
2007年夏季在东海舟山海域河口锋区开展了陆源溶解有机质的调查研究。测定了有色溶解有机质(CDOM)在激发波长370 nm/发射波长460 nm处的荧光强度和在λ=355 nm处的吸收系数,用于代表陆源CDOM浓度,并测定了荧光指数以指示CDOM来源。结果表明,CDOM的荧光值和紫外吸收系数之间呈显著正相关性,陆源CDOM浓度大体有向海方向降低的趋势,但是纵向上存在一些"突跃"现象。在舟山海域东北角不时观测到表层水体含有高浓度的CDOM,但变异性很大,推测可能该海区受到长江口羽状流的影响。在连续观测站发现陆源CDOM浓度在低平潮时往往比高平潮时要高。河海水在混合过程中CDOM浓度与盐度呈显著的线性负相关关系。在低盐度的悬沙锋区(S<24)CDOM浓度明显低于理论稀释值,而在较高盐度的羽状锋区,CDOM浓度接近于理论稀释值。在盐度为24~31范围内,大部分水样的荧光指数在1.50上下波动,表明其中CDOM来源以陆地来源为主;在较低盐度(S<24)的水样中荧光指数在1.70至1.90以上,表明CDOM以海洋来源为主,这与其陆源组分在高浊度的低盐度区存在显著的去除过程有关。研究表明,舟山海域水质存在着显著的变异性,与近岸羽状流密切相关,陆源溶解有机质的分布特征对此有较好的响应。  相似文献   

10.
《Marine Chemistry》2002,77(1):23-41
Chromophoric dissolved organic matter (CDOM) is the light absorbing fraction of dissolved organic carbon (DOC). The optical properties of CDOM potentially permit remote sensing of DOC and CDOM, and correction for CDOM absorption is essential for remote sensing of chlorophyll a (chl a) in coastal and estuarine waters. To provide data for this purpose, we report the distributions of CDOM, DOC, and chl a from seven cruises in Chesapeake Bay in 1994–1997. We observed non-conservative distributions of chl a and DOC in half of the cruises, indicating net accumulations within the estuary; however, there were no net accumulations or losses of CDOM, measured as absorption at 355 nm or as fluorescence. Freshwater end member CDOM absorption varied from 2.2 to 4.1 m−1. Coastal end member CDOM absorption was considerably lower, ranging over 0.4–1.1 m−1. The fluorescence/absorption ratio was similar to those reported elsewhere for estuarine and coastal waters; however, in the lower salinity/high CDOM region of the Bay, the relationship was not constant, suggestive of the mixing of two or more CDOM sources. Chl a was not correlated with the absorption for most of the cruises nor for the data set as a whole; however, CDOM and DOC were significantly correlated, with two groups evident in the data. The first group had high CDOM concentrations per unit DOC and corresponded to the conservative DOC values observed in the transects. The second group had lower CDOM concentrations per unit DOC and corresponded to the non-conservative DOC values associated with net DOC accumulation near the chl a maximum on the salinity gradient. This indicates the production of non-chromophoric DOC in the region of the chl a maximum of Chesapeake Bay. In terms of remote sensing, these data show that (1) the retrieval of the absorption coefficient of CDOM from fluorescence measurements in the Bay must consider the variability of the fluorescence/absorption relationship, and (2) estimates of DOC acquired from CDOM absorption will underestimate DOC in regions with recent, net accumulations of DOC.  相似文献   

11.
The effects of monochromatic and polychromatic UV and visible (VIS) radiation on the optical properties (absorption and fluorescence) of chromophoric dissolved organic matter (CDOM) were examined for a Suwannee River fulvic acid (SRFA) standard and for water from the Delaware and Chesapeake Bays. The primary (direct) loss of absorption and fluorescence occurred at the irradiation wavelength(s), with smaller secondary (indirect) losses occurring outside the irradiation wavelength(s). The efficiency of both direct and indirect photobleaching decreased monotonically with increasing wavelength. Exposure to polychromatic light increased the CDOM absorption spectral slope (S), consistent with previous field measurements. An analysis of the monochromatic photobleaching kinetics argues that a model based on a simple superposition of multiple chromophores undergoing independent photobleaching cannot apply; this conclusion further implies that the absorption spectrum of CDOM cannot arise solely from a simple superposition of the spectra of numerous independent chromophores. The kinetics of CDOM absorption loss with the monochromatic irradiation were employed to create a simple, heuristic model of photobleaching. This model allowed us to examine the importance of the indirect photobleaching losses in determining the overall photobleaching rates as well as to model the photobleaching of natural waters under polychromatic light fields. Application of this model to natural waters closely predicted the change in the CDOM spectral shape caused by photodegradation. The time scale of this process was consistent with field observations acquired during the summertime for coastal waters in the Middle Atlantic Bight (MAB). The results indicate that the ratio of the photodegradation depth to the mixed layer depth is a key parameter controlling the rate of the photobleaching in surface waters.  相似文献   

12.
于2019年3月、7月和10月对长江口及邻近海域有色溶解有机物(CDOM)的分布及河口混合行为进行分析研究。通过对盐度、吸收光谱斜率S275~295、吸收系数aCDOM(355)以及叶绿素a的分析发现,在河口内低盐度区,7月淡水流量大,陆源输入量最大,aCDOM(355)值最高,3月CDOM来源主要受陆源输入和浮游植物生产活动的影响,aCDOM(355)值较10月高;在口外高盐度区,3月和7月的aCDOM(355)值相近,均低于10月,CDOM分布主要受浮游植物生产活动的影响。利用三维荧光光谱?平行因子分析方法共鉴定出4个荧光组分:类蛋白质组分C1(280/330 nm)、类腐殖质组分C2(300/350 nm)、类腐殖质组分C3(260/465 nm)和类腐殖质组分C4(320/410 nm)。在3月、7月及10月,4个荧光组分强度由长江口内到口外呈递减趋势,受陆源输入和浮游植物生产活动的影响,平均荧光强度的季节变化总体上来说,由大到小依次为7月、10月、3月。3个季节CDOM荧光组分均存在偏离理论稀释线的现象,说明CDOM的来源(陆源输入、沉积物再悬浮和现场生物活动)和去除(被颗粒物吸附、光降解和细菌降解)机制复杂多变,揭示了长江口区域CDOM在不同时空下的不保守混合行为。  相似文献   

13.
通过测定有色溶解有机物(CDOM)的吸收光谱和荧光光谱研究了2015年3月和7月长江口盐度梯度下CDOM的分布、组成、来源及河口混合行为等。利用激发发射矩阵荧光光谱(EEMs)并结合平行因子分析(PARAFAC),研究了CDOM的荧光组分特征,共识别出两类4个荧光组分组成,即类腐殖质荧光组分C1(260,375/490 nm)、C2(365/440 nm)、C3(330/400 nm)及类蛋白质荧光组分C4(295/345 nm)。结果表明,3月和7月,4种荧光组分的分布模式与总荧光强度都基本一致:从口内到口外,先升高后降低,且4种组分都在河口呈现不保守混合行为,在最大浑浊带处存在添加过程,达到峰值,在口外有去除过程。3月腐殖化指数HIX范围在1.12~7.19,而7月HIX的范围在0.87~6.71;生物指数BIX在3月范围在0.76~1.11,7月为0.62~1.15,表明3月CDOM的腐殖化程度较7月高,而自生贡献比例较7月略低。3月吸收系数α(355)的平均值为0.55 m-1 ,7月的略高,为0.61 m-1,表明7月长江口CDOM的含量略高。光谱斜率比值SR的季节性变化不大,都是近岸低,远岸高,表明CDOM的平均分子质量从口内到口外在逐渐增加。  相似文献   

14.
One hundred years of hydrographic measurements in the Baltic Sea   总被引:1,自引:0,他引:1  
The first measurements of salinity of the deep water in the open Baltic Sea were made in the last decades of the 1800s. At a Scandinavian science meeting in Copenhagen in 1892, Professor Otto Pettersson from Sweden suggested that regular measurements of hydrographic parameters should be carried out at some important deep stations in the Baltic Sea. His suggestion was adopted and since that time we have rather complete hydrographical data from the Bornholm Deep, the Gotland Deep, and the Landsort Deep and from some stations in the Gulf of Bothnia. The measurements were interrupted in the Baltic Proper during the two World Wars. At the beginning only salinity, temperature and dissolved oxygen were measured and one or two expeditions were carried out annually, mostly in summer. In the 1920s also alkalinity and pH were occasionally measured and total carbonate was calculated. A few nutrient measurements were also carried out. After World War II we find results from four or more expeditions every year and intercalibration of methods was arranged. Results of temperature, salinity and dissolved oxygen measurements from the Bornholm Deep, the Gotland Deep, the Landsort Deep and salinity measurements from three stations in the Gulf of Bothnia, covering the whole 20th century are presented and discussed. The salinity distribution and the variations between oxygen and hydrogen sulphide periods in the deep water of the Gotland Deep and the Landsort Deep are demonstrated. Series of phosphate and nitrate distribution in the Gotland Deep are shown from the 1950s to the present and the effects of the stagnant conditions are briefly discussed. Two large inflows of highly saline water, the first during the First World War and the second in 1951, are demonstrated. The 20th century minimum salinity of the bottom water in the Baltic Proper in 1992 is discussed.  相似文献   

15.
In the present study, we used a 3D Coupled Ecosystem Model of Baltic Sea version 1 (3D CEMBSv1) coupled with a copepod model to examine the spatiotemporal distribution of two representative copepod populations in the Gulf of Gdansk (southern Baltic Sea) including Acartia spp. and Pseudocalanus minutus elongatus. The annual cycles simulated for 2000 under realistic weather and hydrographic conditions were studied with the three-dimensional version of the coupled ecosystem-copepod model in the south-eastern Baltic Sea. The paper presents the comparison of simulated and observed copepod development at two stations in the Gulf of Gdansk. A validation of influential state variables gives confidence that the model is able to calculate reliably the stage development of dominant species in the southern Baltic Sea. The number of generations was one for P. m. elongatus and 3?C5 for Acartia spp.. A mean of five generations for the latter species per year were estimated in the coastal region and ca. three generations at the Gdansk Deep (in the open sea). Food concentration and temperature as the main factors controlling the development of the investigated copepods as well as salinity as a masking factor (i.e. salinity modifies the rate of their development) in the case of Pseudocalanus minutus elongatus are included in the present study.  相似文献   

16.
The sensitivity of the Baltic Sea mean salinity to climatic changes of the freshwater supply is analyzed. The average salinity of the Baltic Sea is about 6‰. The low salinity is an effect of a large net freshwater supply and narrow and shallow connections with the North Sea. As a result of mixing in the entrance area, a large portion of the outflowing Baltic Sea water returns with the inflowing salty water and thus lowers the salinity of the Baltic Sea deep-water considerably. This recycling of the Baltic Sea water is a key process determining the salinity of today's Baltic Sea. The sensitivity of this recycling, and thus of the Baltic Sea salinity, to climatic changes in the freshwater supply is analyzed. A simple model is formulated for the variations of the Baltic Sea freshwater content. Historical data of the freshwater supply and the salinity in the Baltic Sea are used in the model to achieve an empirical expression relating variations of the recycling of Baltic Sea water to the variations of the freshwater supply. The recycling is found to be very sensitive to the freshwater supply. We find that an increase of freshwater supply of 30% is the level above which the Baltic Sea would turn into a lake. Recent climate modeling results suggest that river runoff to the Baltic Sea may increase dramatically in the future and thus possibly put the Baltic Sea into a new state.  相似文献   

17.
The Baltic Sea is a semi-enclosed sea with a steady salinity gradient (3‰–30‰). Organisms have adapted to such low salinities, but are suspected to be more susceptible to stress. Within the frame of the integrated environmental monitoring BONUS + project “BEAST” the applicability of immune responses of the blue mussel was investigated in Danish coastal waters. The sampling sites were characterised by a salinity range (11–19‰) and different mixtures of contaminants (metals, PAHs and POPs), according to chemical analysis of mussel tissues. Variation partitioning (redundancy analysis) was applied to decompose salinity and contamination effects. The results indicated that cellular immune responses (total and differential haemocyte count, phagocytic activity and apoptosis) were mainly influenced by contaminants, whereas humoral factors (haemolytic activity) were mainly impacted by salinity. Hence, cellular immune functions may be suitable as biomarkers in monitoring programmes for the Baltic Sea and other geographic regions with salinity variances of the studied range.  相似文献   

18.
西太平洋冬季上层水体有色溶解有机物的分布和转化特征   总被引:3,自引:1,他引:2  
王泽华  邹立  陈洪涛  史洁  杨阳 《海洋学报》2018,40(10):180-189
为深入解析西太平洋溶解有机碳的生物地球化学过程,本研究于2015年12月至2016年1月,开展了西太平洋上层水体有色溶解有机物(CDOM)吸收光谱和荧光光谱特征研究。研究结果表明,西太平洋上层水体CDOM吸收系数a(320)变化范围为0.01~1.07 m-1,平均值为0.18 m-1;其较高值位于100~200 m水层,表层的海水相对含量较低,主要以有机物的光化学分解为主。采用PARAFAC分析CDOM三维荧光光谱特征,得到1种类腐殖质组分C2(252(310 nm)/405 nm)及2种类蛋白组分C1(224(276 nm)/335 nm)和C3(224(260 nm)/300 nm),其中类腐殖质荧光组分占总荧光强度的11%~22%,蛋白质荧光组分占总荧光强度的78%~89%,蛋白质荧光中类色氨酸和类络氨酸组分对荧光强度的贡献相当。洋流在大尺度上控制西太平洋CDOM的分布特征,两流交界处和环流形成区域的CDOM相对含量较高,荧光信号较强。西太上层水体CDOM相对含量和荧光信息,与温度、盐度、DO和营养盐等理化因素之间的相关分析结果表明,CDOM主要成分类蛋白质的产生主要受上层水体初级生产过程控制。  相似文献   

19.
The Wadden Sea, a shallow coastal area bordering the North Sea, is optically a complex area due to its shallowness, high turbidity and fast changes in concentrations of optically active substances. This study gathers information from the area on concentrations of suspended particulate matter (SPM), Chlorophyll-a (Chl-a), and Coloured Dissolved Organic Matter (CDOM), on total absorption and beam attenuation, and on reflectances from the whole area. It examines the processes responsible for variations in these. Sampling took place at 156 stations in 2006 and 2007. At 37 locations also the specific inherent optical properties (SIOPs) were determined. Results showed large concentration ranges of 2–450 (g m-3) for SPM, 2–67 (mg m-3) for Chl-a, and 0–2.5 m−1 for CDOM(440) absorption. Tides had a large influence on the SPM concentration, while Chl-a had a mainly seasonal pattern. Resuspension lead to a correlation between SPM and Chl-a. The absorption of CDOM had a spatial variability with extremely high values in the Dollard, although the slope of CDOM absorption spectra was comparable with that of the North Sea. The Chl-a specific pigment absorption proved to be influenced by phytoplankton species and specific absorption of non-algal particles at 440 nm was correlated with the mud content of the soil at the sample locations. SPM specific absorption was not found to correlate with any measured factor. As the concentrations of optically active substances changed, we also found spatial and temporal variability in the absorption, beam attenuation and reflectances. Reflectance spectra categorized in groups with decreasing station water depths and with extreme CDOM and SPM concentrations showed distinguishable shapes.  相似文献   

20.
厦门湾有色溶解有机物的光吸收特性研究   总被引:3,自引:0,他引:3  
研究了厦门湾九龙江河口区、西海域、同安湾及东侧水道海水中有色溶解有机物(CDOM)的光吸收特性,分析了CDOM的河口行为,并讨论了CDOM光吸收特性与其荧光性质之间的关系。结果表明,厦门湾表层海水CDOM光吸收系数a(355)的水平分布表现为河口区最高、东侧水道最低、西海域和同安湾介于两者之间,底层水a(355)的分布与表层基本相似,表明陆源河流输入是厦门湾CDOM的主要来源;a(355)的垂直分布为表层高于底层,主要受水文和生物因素控制。厦门湾表层水CDOM光谱斜率S的平均值介于0.014—0.018nm-1,但河口低盐度区S值较小,反映陆源腐殖质的影响。a(355)在河口混合中呈保守行为,表明CDOM具有良好的保守性质。CDOM的吸收系数a(355)与其荧光强度之间表现为较好的相关关系,指示可以用灵敏度更高的荧光方法来研究CDOM的分布和行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号