首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
铀矿石和固体环境样品用Na2O2,NaOH在650°C快速熔融后,用HCl中和到pH值近似为9,以Fe(OH)3载带210Po,调HCl酸度为0.2-0.4mol/L,用抗坏血酸保护镀片,在70°C时自镀3h,210Po的回收率可达97.8±1.4%。产生的硅胶不影响测量结果。  相似文献   

2.
我国首次发现的砷钙锌石和羟砷锌石产于内蒙古自治区额济纳旗老硐沟金矿脉氧化带矿石的空洞中。砷钙锌石多呈半自形或自形晶体,绿或淡绿色,透明,比重4.32(计算)。Ng=1.778,Nm=1.760,Np=1.756,二轴晶(+),2V=46°。化学分子式为Ca0.99(Zn0.94Cu0.07)1.01[(AsO4)0.97(CO3)0.03]1.00(OH),其中(CO3)2-取代部分(AsO4)3-为红外光谱分析所证实,这不同于国外报道的砷钙锌石。据X射线粉末衍射分析的主要谱线,计算得其晶胞参数:a=0.7473nm,b=0.9017nm,c=0.5916nm。羟砷锌石常呈集合体或单个晶体产出,淡黄绿色或无色,透明,比重4.44(计算)。Ng=1.761,Nm=1.738,Np=1.719,二轴晶(+),2V=87°。化学分子式为(Zn1.97Ca0.02)1.99(AsO4)(OH)。据X射线粉末衍射分析的主要谱线,计算得其晶胞参数:a=0.8304nm,b=0.8516nm,c=0.6054nm。氧化矿石的主要矿物组合为:臭葱石+褐铁矿+针铁矿+砷钙锌石+羟砷锌石+自然金+自然银+石英+方解石+蛋白  相似文献   

3.
肖正元  黎宏彦 《岩矿测试》1994,13(2):128-130
采用了单柱离子色谱法测MnO2产品中无机离子杂质;提出了消除干扰的可行途径,将La(OH)3加入后能同时消除进样峰的干扰和溶剂峰的出现。选用1.75mmol/L邻苯二甲酸1.75mmol/L三羟甲基氨基甲烷为混合淋洗剂测定F^-,Cl^-,NO3^和SO^2-4,其标准加入回收率为95%-105%;RSD(n=7)为2.47%-8.08%。  相似文献   

4.
青藏高原五道梁冻土活动层表面二氧化碳和甲烷的排放   总被引:9,自引:3,他引:9  
林清  金会军  程国栋  李宁 《冰川冻土》1996,18(4):325-330
通过静态箱取样方法,首次获得青藏高原冻土活动层排放气体。分析测定结果表明,CH4含量为0.63~1.54μg/g,平均为1.19μg/g,大多数样品CH4含量低于当地大气CH4含量(1.32μg/g);CO2含量为0.15%~0.27%,平均为0.21%,明显高于大气CO2的浓度(0.069%)。CH4、CO2含量具有一定的日变化特征。CH4排放率为-0.032~0.048mgm-2h-1,平均为0.001mgm-2h-1;CO2排放率为-56.503~61.425mgm-2h-1,平均为0.095mgm-2h1。从所获得的冻土排放气体中CH4和CO2的浓度来看,这种干燥寒冷的高原冻土活动层表面CH4排放较少,CO2的排放较高  相似文献   

5.
重铬酸钾法测定废水COD条件改进的研究   总被引:3,自引:0,他引:3  
本提出用CuSO4作催化剂,在H2SO4-H2PO4溶液中,重铬酸钾回流测定废水COD的方法,实验表明,最佳测定条件为:CuSO4浓度为7×10^-2mol.L^-1(混酸溶液):H2SO4:H3PO4=5:1(体积比)回流时间2h,通过与标准方法对比,测定结果满意,本方法的优点是:不需用贵重金试剂Ag2SO4,改用CuSO4作催化剂,精密度高,准确性好,具有一定的实用价值。  相似文献   

6.
砷铜矾的发现与研究   总被引:4,自引:0,他引:4       下载免费PDF全文
砷铜矾(Pamauite)在1978年首次发现于美国,1984年笔者在广西德保矿区也发现了这种矿物,笔者发现在这种矿物有两种形态,即纤维状和薄片状。纤维状砷铜矾的化学成分为(%):CuO58.69,As2O517.41,SO36.54,FeO0.86,SiO20.08,(H2O17.70),其理想分子式为:Cu9(AsO4)2(SO4)(OH)10.7H2O,与美国产出的砷铜矾的化学成分基本一致,  相似文献   

7.
湖南铲子坪金矿的矿物标型及其地质意义   总被引:2,自引:0,他引:2  
矿床位于白马山花岗岩外接触带附近,成矿阶段单一,矿物组份较复杂.金矿物颗粒细小,杂质少,成色高,硬度较高,与硫化物密切共生.石英以充填于构造空间的乳白色石英和交代构造岩的烟灰色、灰白色石英两种形式产出.二者同期共生,普遍发生塑性变形,含大量气液包裹体,气相成分以H2O和CO2为主,H2O>>CO2,贫N2,包裹体水的δ18OH2o比白马山花岗岩稍低.黄铁矿重结晶和动力变质现象普遍.五角十二面体、八面体黄铁矿的含金性好,立方体的含金性则较差.向深部,立方体黄铁矿减少,五角十二面体及其与立方体的聚形增多.黄铁矿的化学成分复杂,S/Fe=1.92—2.02,亏硫;Co/Ni平均为1.17;Se/Te=12.4;S/Se=7.8×104;δ34S分布于+0.32‰-7.58‰的狭窄范围内.其晶胞参数(a0)与Co、Ni、As、Hg、Sn等质元素的含量相关.本矿床与胶东夏甸金矿类似,具有中-浅成中-低温岩浆热浪成因特点.成矿热浪来自白马山花岗岩,矿液由北向南,自西向东迁移.具大型矿床规模.矿床西部和Ⅰ矿脉带的深部有较好的找矿前景.  相似文献   

8.
示波极谱法测定矿石中的金   总被引:4,自引:0,他引:4  
在PT-H3PO4-NaH2PO4体系中,金有一个络合吸附波,峰电位为-0.32V(Vs.SCE),检测下限为8.2×10^-9mol.L^-1峰电流与金含量在0.020~0.80μg.ml^-1范围内呈线性关系,该法可用于金矿中金的测定。  相似文献   

9.
北塔山地区石英脉红外光密度特征及其意义   总被引:1,自引:0,他引:1  
新疆北塔山东南部及小哈甫提克地区石英脉中H2O的相对光密度绝大部分大于1.0大部分在3~5之产变化,CO2的相对光密度大于0.1,大部分在0.3~0.5之间的变化,随着石英脉中H2O的相对光密度平均值由于2.50→3.95→4.87,H2O与CO2的相对光密度比值的平均值由6.43→7.20→13.34,金的平均含量由零逐渐升高,含金石英脉由近地表深部,H2O和CO2相对光密度平均值分别为4.95  相似文献   

10.
冀东高级变质岩石的流体包裹体研究   总被引:5,自引:5,他引:5  
刘树文 《岩石学报》1995,11(4):375-385
冀东高级变质的石榴石斜长片麻岩、含或不含石榴石的角闪二辉斜长片麻岩、紫苏花岗岩、斜长角门岩等岩石中的流体包裹体主要有4类,按形成的先后顺序依次为:(1)H2O和CO2两液相包裹体,CO2的部分均一温度是-12℃,密度1.04g/cm3,H2O含量21%~39%(mole%),CO2含量50%~71%(mole%);(2)CO2液相包裹体,冰点温度-56℃~-61℃,均一温度-7.4℃~-35.1℃,CO2密度约为1.05g/cm3,CO2含量82.1%~98.4%(mole%),还有少量的CH4、N2和H2等组分;(3)H2O和CO2多相包裹体,CO2的部分均一温度7℃~28℃,CO2密度为0.64~0.93g/cm3,气相组分以CO2、CH4和CO为主,液相成分主要是H2O和CO2;(4)多世代盐水溶液包裹体,冰点温度-0.5℃~-20℃,盐度0.87%~22.8%(wt%),盐水密度0.7~1.05g/cm3,均一温度在150℃~200℃和约300℃,存在两个峰值。不同世代的流体包裹体记录了等密度降温的P-T路径。包裹体反映的变质作用早期降温过程流体的H2O/H2O+CO2(mole)比值降低,晚期升高  相似文献   

11.
In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces. Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite. It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that ThiobaciUus ferrooxidans can enhance greatly the oxidation of pyrite.  相似文献   

12.
Pyrite is a sensitive mineral in the geological environment,and its oxidation produces an important geochemical and environmental effect on the control of the redox and pH conditions.Column experiment results were used for modeling the geochemical processes in uranium mill tailings under leac-hing conditions.Oxidation of pyrite dominates the control of the tailings leaching process.The experi-mental and modeling results show that the leachate chemistry changes substantially with the decrease in pyrite consumption.In the initial stage of the leaching experiment,the pyrite is consumed several hun-dred times grater than that in the later stages,for much more oxygen is present in the tailings in the ini-tial stage.As the experiment continues,the tailings is gradually saturated with water and the oxygen concentration greatly decreases and so does pyrite consumption.The experimental and modeling results are useful for the design of mill tailing decommissioning:oxidation process and transport of radioactive nuclides and heavy metals can be constrained by controlling the oxygen concentration of tailings and the infiltration of meteoric water.  相似文献   

13.
The present study examines the processes that control the oxidation attenuation of a pyrite-rich sludge (72 wt% pyrite) from the Iberian Pyrite Belt by the buffer capacity of a fly ash from Los Barrios power station (S Spain), using saturated column experiments. In addition, in order to understand the behaviour of both materials inside these experiments, a fly-ash leaching test and flow-through experiments with pyritic sludge were carried out. The fly-ash leaching test showed that after leaching this material with a slightly acid solution (Millipore MQ water; pH 5.6) the pH raised up to 10.2 and that the metals released by the fly-ash dissolution did not increase significantly the metal concentrations in the output solutions. The flow-through experiments with the pyritic sludge were performed at pH 9, 22 °C and O2 partial pressure of 0.21 atm, to calculate the dissolution rate of this residue simulating the fly-ash addition. In the experiments Fe bearing oxyhydroxides precipitated as the sludge dissolved. In two non-stirred experiments the iron precipitates formed Fe-coatings on the pyrite surfaces preventing the interaction between the oxidizing agents and the pyrite grains, halting pyrite oxidation (this process is known as pyrite microencapsulation), whereas in two stirred experiments, stirring hindered the iron precipitates to coat the pyrite grains. Thus, based on the release of S (aqueous sulphate) the steady-state pyritic sludge dissolution rate obtained was 9.0 ± 0.2 × −11 mol m−2 s−1.In the saturated column experiments, the sludge dissolution was examined at acidic and basic pH at 22 °C and oxygen-saturated atmosphere. In a saturated column experiment filled with the pyritic sludge, pyrite oxidation occurred favourably at pH approx. 3.7. As the leachates of the fly ash yielded high basic pH, in another saturated column, consisting of an initial thick layer of fly-ash material and a layer of pyritic sludge, the pyrite dissolution took place at pH approx. 10.45. In this experiment, iron was depleted completely from the solution and attenuation of the sludge oxidation was produced in this conditions. The attenuation was likely promoted by precipitation of iron-bearing phases upon the pyritic surface forming Fe-coatings (of ferrihydrite and/or Fe(III) amorphous phases) that halted the pyrite oxidation (as in non-stirred flow-through experiments). Results suggest that buffering capacity of fly ash can be used to attenuate the pyrite-rich sludge oxidation.  相似文献   

14.
In the mining environments of the Iberian Pyrite Belt (IPB), the oxidation of sulphide wastes generates acid drainage with high concentrations of SO4, metals and metalloids (Acid Mine Drainage, AMD). These acid and extremely contaminated discharges are drained by the fluvial courses of the Huelva province (SW Spain) which deliver high concentrations of potentially toxic elements into the Gulf of Cádiz. In this work, the oxidation process of mine tailings in the IPB, the generation of AMD and the potential use of coal combustion fly ash as a possible alkaline treatment for neutralization of and metal removal from AMD, was studied in non-saturated column experiments. The laboratory column tests were conducted on a mine residue (71.6 wt% pyrite) with artificial rainfall or irrigation. A non-saturated column filled solely with the pyrite residue leached solutions with an acid pH (approx. 2) and high concentrations of SO4 and metals. These leachates have the same composition as typical AMD, and the oxidation process can be compared with the natural oxidation of mine tailings in the IPB. However, the application of fly ash to the same amount of mine residue in another two non-saturated columns significantly increased the pH and decreased the SO4 and metal concentrations in the leaching solutions. The improvement in the quality of leachates by fly ash addition in the laboratory was so effective that the leachate reached the pre-potability requirements of water for human consumption under EU regulations. The extrapolation of these experiments to the field is a promising solution for the decontamination of the fluvial courses of the IPB, and therefore, the decrease of pollutant loads discharging to the Gulf of Cádiz.  相似文献   

15.
Pyrite oxidation is considered to be a main contribution to the acidification of minesite spoils and the generation of the Acid Mine Drainage (AMD) which has become the greatest threat to the ecological environment. In this paper, pyrite oxidation and its controls are reviewed with respect to the latest literature. Conceptual model and empirical rate law model with reference to indoor experiments are classified and presented to describe pyrite oxidation in heterogeneous minesite spoil piles. The influences of Thiobacillus (T) ferrooxidans on pyrite oxidation are simply summarized. In order to prevent the generation of the AMD, three approaches including the addition of alkali to minesite spoil, use of dry covers, and coating on the minesite spoil surface, are discussed.  相似文献   

16.
We used scanning electron microscopy and energy dispersive X-ray analysis to examine sediments from vegetated portions of three salt marshes, the Great Sippewissett Marsh (Cape Cod, MA), Sapelo Island (Georgia), and the Hackensack Meadowlands (N.J.), and from the sediments of an estuary, Newark Bay (N.J.). Pyrite particles were abundant in sediments from all sites. Both fine grained pyrite crystals and framboids were found. Single, fine grained crystals (diameter = 0.2 to 2.0 micrometers) predominated in all samples, strong evidence for rapid formation of pyrite.We also found both microcrystalline and framboidal iron-oxyhydroxide phases in many of the sediment samples. This is evidence of pyrite oxidation within the sediments and suggests that iron is conserved in salt marshes even as pyrite is oxidized. The thermodynamic stability of iron phases in marsh sediments, and recent pyrite oxidation studies in coal, suggest goethite as the crystalline iron-oxyhydroxide phase present. In addition, we sometimes found a red amorphous coating on grass roots from the Great Sippewissett and Sapelo Island marshes. This coating is likely a form of hydrated iron (III) oxide.  相似文献   

17.
We have used synchrotron-based soft X-ray core-level photoemission and adsorption spectroscopies to study the reaction of aqueous sodium chromate solutions with freshly fractured pyrite surfaces. Pyrite surfaces were reacted with 50 μM sodium chromate solution at pH 7 for reaction times between 1 min and 37 hr. Additional experiments were performed at pH 2 and pH 4 with 50 μM sodium chromate solutions and at pH 7 with 5 mM solutions. At chromate concentrations of 50 μM, all chromium present on the pyrite surface was in the form of Cr(III), while at 5 mM, both Cr(III) and Cr(VI) were present at the pyrite surface. Minor quantities of oxidized sulfur species (sulfate, sulfite, and zero-valent sulfur) were identified as reaction products on the pyrite surface. The amount of oxidized sulfur species observed on the surface was greater when pyrite was reacted with 5 mM Cr(VI) solutions because the rate of chromium deposition exceeded the rate of dissolution of pyrite oxidation products, effectively trapping Cr(VI) and oxidized sulfur species in an overlayer of iron(III)-containing Cr(III)-hydroxide. This work shows that pyrite, an extremely cheap and readily available waste material, may be suitable for the removal of hexavalent chromium from acidic to circumneutral waste streams. The reduced chromium ultimately forms a coating on the pyrite surface, which passivates the pyrite surface towards further oxidation.  相似文献   

18.
An early Proterozoic palaeosol, developed on basalt and the basal part of an overlying transgressive marine sedimentary sequence, contains pyrite which is auriferous in places. The mineralization is stratiform and continuous over a distance of several hundred kilometres. Although this mineralization can be explained by a number of genetical models the author concluded that the mineralization took place during pedogenesis and/or diagenesis. Gold is considered to have been leached from the basalt and from the B horizon of the palaeosol by sulphide-rich groundwater and was then precipitated by the effect of the lowering of the HS activity. The latter is thought to have been caused by atmospheric oxidation and by reaction with Fe-rich leachate from the A horizon, and pyritization of pre-existing iron oxide minerals may also have contributed. It is concluded that a pedogenic gold protore may explain the origin of at least some of the gold of the Witwatersrand type of deposit.  相似文献   

19.
The reactive transport modeling of a complicated suite of reactions apparent in the aquifer during the application of N-containing fertilizers is reported. The unconfined sandy aquifer can be subdivided into an oxic zone which contains groundwater with oxygen and nitrate and an anoxic zone characterized by elevated iron and sulfate concentrations in groundwater. Oxygen and nitrate are being reduced by pyrite and organic matter that commonly apparent in the aquifer. The oxidation of pyrite is modeled using the local equilibrium approach, whereas decomposition of organic matter, with the adoption of kinetic approach. The system is buffered by dissolution of aluminum and iron oxides. The modeling process is a two-step procedure. First, the processes are modeled in the one-dimensional (1D) column using PHREEQC code. Subsequently, the calibrated and verified data were copied and used in two-dimensional (2D) PHAST model. Prior to the performance of reactive transport modeling operations with PHAST, a reliable flow model was executed. Finally, predictions are made for the distribution of water chemistry for the year 2008. Model predicts that sulfate derived from the ongoing pyrite oxidation is reduced by the dissolved organic carbon at the higher depth and forms pyrite by the reaction with iron. The results of this study highlight the importance of understanding the interplay between the transport and chemical reactions that occur during the input of nitrate to the aquifer. Reactive transport modeling incorporating the use of a newly developed code PHAST have proved to be a powerful tool for analyzing and quantifying such interactions.  相似文献   

20.
A multicomponent diagenetic model was developed and applied to reconstruct the conditions under which the most recent sapropel, S1, was deposited in the eastern Mediterranean Sea. Simulations demonstrate that bottom waters must have been anoxic and sulphidic during the formation of S1 and that organic matter deposition was approximately three times higher than at present. Nevertheless, most present day sediment and pore water profiles — with the exception of pyrite, iron oxyhydroxides, iron-bound phosphorus and phosphate — can be reproduced under a wide range of redox conditions during formation of S1 by varying the depositional flux of organic carbon. As a result, paleoredox indicators (e.g., Corg:S ratio, Corg:Porg ratio, trace metals) are needed when assessing the contribution of oxygen-depletion and enhanced primary production to the formation of organic-rich layers in the geological record. Furthermore, simulations show that the organic carbon concentration in sediments is a direct proxy for export production under anoxic bottom waters.The model is also used to examine the post-depositional alteration of the organic-rich layer focussing on nitrogen, phosphorus, and organic carbon dynamics. After sapropel formation, remineralisation is dominated by aerobic respiration at a rate that is inversely proportional to the time since bottom waters became oxic once again. A sensitivity analysis was undertaken to identify the most pertinent parameters in regulating the oxidation of sapropels, demonstrating that variations in sedimentation rate, depositional flux of organic carbon during sapropel formation, bottom water oxygen concentration, and porosity have the largest impact. Simulations reveal that sedimentary nutrient cycling was markedly different during the formation of S1, as well as after reoxygenation of bottom waters. Accumulation of organic nitrogen in sediments doubled during sapropel deposition, representing a significant nitrogen sink. Following reventilation of deep waters, N2 production by denitrification was almost 12 times greater than present day values. Phosphorus cycling also exhibits a strong redox sensitivity. The benthic efflux of phosphate was up to 3.5 times higher during the formation of S1 than at present due to elevated depositional fluxes of organic matter coupled with enhanced remineralisation of organic phosphorus. Reoxygenation of bottom waters leads to a large phosphate pulse to the water column that declines rapidly with time due to rapid oxidation of organic material. The oxidation of pyrite at the redox front forms iron oxyhydroxides that bind phosphorus and, thus, attenuate the benthic phosphate efflux. These results underscore the contrasting effects of oxygen-depletion on sedimentary nitrogen and phosphorus cycling. The simulations also confirm that the current conceptual paradigm of sapropel formation and oxidation is valid and quantitatively coherent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号