首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》2005,20(7):1258-1267
Distributions of 21 major and trace elements in HNO3 extracts of different horizons were studied in 13 podzol profiles from the boreal forest in different parts of Norway using ICP–MS. On the basis of ratios between the HNO3-extractable fractions in the various horizons some general trends were elucidated. Two different groups of elements concentrated in the humus layer relative to the mineral horizons were identified, one mainly associated with contributions from air pollution (As, Cd, Sb, Pb), another one with plant nutrient circulation (K, Ca, Mn and to a lesser extent Mg, Co, Ni, Rb) and some with both mechanisms (Cu, Zn, Tl). The elements most clearly enriched along with Fe in the B horizon were V, Pb, Al, and Cr in that order, Pb partly because of leaching from the polluted organic surface soil. Four soils in the far south showed a behaviour distinctly different from the rest and were treated as a separate group. Relative to the more northerly sites the surface horizons of these soils were strongly depleted in lithogenic elements (Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, La) and enriched in elements typical of long-range transport of pollutants (As, Cd, Sb, Tl, Pb). Also the B horizon in the southern soils was strongly depleted in the lithogenic group elements, including Fe and the associated metals. The main reason for this difference is assumed to be the greater influence of transboundary air pollution and associated metals and stronger soil acidification in the far south of the country.  相似文献   

2.
Concentrations of Al, Mn, Fe, Ag, and Pb in dissolved and particulate phases of the surface water were determined at 15 stations along the coastline off western Taiwan in April of 2007. This study presents the first set of data for Al, Ag, and Pb in the nearshore waters. Latitudinal distribution of these metals showed that high values were present in the regions affected by high fluvial discharge from the Dan-Sui River and the Cho-Sui River. Using the particle fluxes from 210Po/210Pb disequilibria, the removal fluxes and the residence times of the trace metals were calculated. Based on the K d values, the sequence of particle affinity of trace metals, Fe ~ Al >> Pb > Mn > Ag, was found. The correlation of the residence times and of the partitioning coefficients of multiple metals in the nearshore waters implies that the affinities to the particles determine the geochemical cycling of metals in the coastal water.  相似文献   

3.
Many small estuaries are influenced by flow restrictions resulting from transportation rights-of-way and other causes. The biogeochemical functioning and history of such systems can be evaluated through study of their sediments. Ten long and six short cores were collected from the length of Jordan Cove, Connecticut, a Long Island Sound subestuary, and analyzed for stratigraphy, radionuclides (14C, 210Pb, 226Ra, 137Cs, and 60Co), and metals (Ag, Cd, Cu, Pb, Zn, Fe, and Al). For at least 3,800 yr, rising sea level has gradually inundated Jordan Cove, filling it with mud similar to that currently being deposited there. Long-term sediment accumulation in the cove averaged close to 0.1 cm yr−1 over the last three millennia. Recent sediment accumulation rates decrease inland from 0.84 cm yr−1 to 0.40 cm yr−1, and are slightly faster than relative sea-level rise at this site (0.3 cm yr−1). Similarity of depth distributions of trace metals was used to confirm relative sediment accumulation rates. 60Co and Ag are derived from sources outside the cove and its watershed, presumably the Millstone nuclear power plant and regional contaminated sediments, respectively. The combined data suggest that Long Island Sound is an important source of sediment to the cove; a minor part of total sediment is supplied from the local watershed. Trace metal levels are strongly correlated with Fe but not with either organic matter or Al. Sediment quality has declined in the cove over the past 60 yr, but only slightly. Cu, Pb, and Zn data correlate strongly with Fe but not with either organic matter or aluminum. Ratios of Ag to Fe and to trace metals suggest that Ag in the cove is derived almost entirely from Long Island Sound. This result supports the notion that Fenormalized Ag can serve as a better tracer of some kinds of contamination than more common and abundant metals, like Cu, Pb, and Zn. *** DIRECT SUPPORT *** A01BY085 00008  相似文献   

4.
Analysis of soil profiles and shallow ground water in the Susquehanna River basin, northeastern U.S.A., indicates that the atmospheric flux of 210Pb is efficiently scavenged by the organic-rich horizons of the soils. This atmospherically supplied 210Pb in soil profiles can only be lost from the system by soil erosion. Based on the annual sediment yield of the Susquehanna River and the excess 210Pb concentration in particulate matter, a mean residence time of 2000 yr is calculated for metals similar to Pb in soil profiles.The West Branch of the Susquehanna River (WBSR) is strongly affected by acid mine drainage and is low in pH and high in dissolved ( <0.4 μm) 210Pb, Fe and Mn. Along its course iron hydroxide is precipitating at a pH of between 4 and 4.5 and the 210Pb supplied by the acid mine water is diminished by about 25% as a result of dilution. As the WBSR enters the Valley and Ridge Province of the Appalachians it has a 210Pb concentration of ~ 0.2 dpm/l. At this juncture it receives a considerable influx of alkalinity from tributaries draining carbonate terranes, resulting in neutralization of the sulfuric acid and increase of the river pH to around 6.5–7. This pH adjustment is accompanied by the precipitation of Fe and Mn. Due to the slow rate of Mn removal from solution, the Mn precipitation extends a considerable distance down river from the point of acid neutralization. Analyses for 210Pb in the river at points in or below the region of Mn precipitation show that 210Pb is rapidly scavenged from solution onto suspended particles. From the data it is possible to calculate the removal rate of Pb from water in the presence of Fe and Mn hydroxides and other particles. At a pH of 4–4.5 Pb removal is nonexistent relative to the river flow rate, but at a pH of 6.5–7 the 210Pb data indicate a residence time of <0.7 day for dissolved Pb.  相似文献   

5.
The influence of litter quality on soil organic matter (SOM) stabilization rate and pathways remains unclear. We used 13C/15N labeled litter addition and Curie-point pyrolysis gas chromatography–mass spectrometry combustion-isotope ratio mass spectrometry (Py–GC–MS–C–IRMS) to explore the transformation of litter with different composition and decay rate (ponderosa pine needle vs. fine root) to SOM during 18 months in a temperate conifer forest mineral (A horizon) soil. Based on 13C Py–GC–MS–C–IRMS the initial litter and bulk soil had ∼1/3 of the total pyrolysis products identified in common. The majority was related either to carbohydrates or was non-specific in origin. In bulk soil, carbohydrates had similar levels of enrichment after needle input and fine root input, while the non-specific products were more enriched after needle input. In the humin SOM fraction (260 yr C turnover time) we found only carbohydrate and alkyl C-derived compounds and greater 13C enrichment in the “carbohydrate” pool after fine root decomposition. 15N Py–GC–MS–C–IRMS of humic substances showed that root litter contributed more than needle litter to the enrichment of specific protein markers during initial decomposition.We found little evidence for the selective preservation of plant compounds considered to be recalcitrant. Our findings suggest an indirect role for decomposing plant material composition, where microbial alteration of fine root litter seems to favor greater initial stabilization of microbially derived C and N in SOM fractions with long mean turnover times, such as humin, compared to needles with a faster decay rate.  相似文献   

6.
The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of FeIII in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of FeIII stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses.Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted FeIII bound to organic ligands (FeIIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of FeIIIOM to the rivers. The concentration of FeIIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The contribution of soil organic matter to the transfer of Fe to rivers is likely at the origin of the peculiar Fe isotope pattern recently recognized in podzolic environments.  相似文献   

7.
In the present investigation down core variations of heavy metals such as; Zn, Ni, Co, Mn, Fe and Al in a sediment core from Bay of Gorgan adjacent to the Caspian Sea was studied. Inter-relationship amongst various parameters was brought out through correlation coefficients and cluster analysis. The results of present study reveals that Zn, Ni, Co and Mn possess both lithogenous and non-lithogenous sources. The increasing trend of Al towards top of sediment core is indicative higher erosion in the recent years. Interestingly, concentration of all studied metals increases toward core top (except for Fe) that might be indicative of influence of man’s activities residing in catchment area of Gorgan Bay and also oil exploration in the Caspian Sea. Further, 210Pb and 137Cs techniques were used to find out rate of sedimentation. The result of dating is indicative of sedimentation rate between 1.4 to 2.45 mm/yr. based on 210Pb and 137Cs activities respectively.  相似文献   

8.
In support of IGCP Project 259 (International Geochemical Mapping), a pilot survey designed to test the effectiveness of analysing dried humus collected at an extremely low sampling density (one composite sample per 23 000 km2) for geochemical mapping was carried out in 49 large catchment basins in Fennoscandia. The samples were analysed for their aqua-regia leachable contents of 30 elements by ICP-ES. The results were compared with those of till sampled at the same sites and with moss from previous surveys. The correlation with underlying bedrock was also studied.Geological features exert only a weak influence on the regional distribution of elements in humus. Exceptions are high levels of Ca and Sr in areas of carbonate bedrock and low contents of K in areas of Archean rocks. The distribution patterns of Co, Cr, Cu, Mg, Ni and Zn in humus coincide partly, and the levels correlate positively with those in till. The contents of Ni, Cr and Cu are lower in humus overlying acid magmatic rocks and arkose than other rock types.Pollution is the obvious source of high concentrations of Pb, Cd and Zn in southern Sweden and southern Norway. Acid fallout seems to cause leaching of Al, P and La from the humus horizon. The contents of these elements are low in the south where deposition of S and N is high and pH of rainwater is below 4.5. Deposition of sea salts gives high levels of Na, Mg, K and B along the coast of Norway and southern Sweden.The contents of several elements in humus correlate positively with the amount of organic matter (LOI). Comparison between four types of forest shows that the contents of Ca, Mg and Na in birch forest and of Cd, Mn, Pb and Zn in spruce forest are significantly higher than in other forest types. These features, however, are considered false and are due to sources such as atmospheric deposition of anthropogenic metals and sea salt.The results of the relatively strong chemical attack used for analyses of humus samples are less informative than those from till and overbank sediments. A weaker attack may have given more useful information. The humus horizon could be suited for environmental monitoring if used in global geochemical mapping.  相似文献   

9.
The sorption parameters of Cu, Zn and Pb are related to the composition of the different genetic horizons of a Luvisol profile in batch sorption experiments. The affinities of metals towards the soil samples from different horizons followed the same sequence, e.g. Pb≥C>>Zn. By far the highest metal retention was found in the Ck horizon due to the alkaline conditions. It is followed by the A horizon with its high organic matter content, while the lowest sorption capacity was found in the Bt horizon. In the horizons free of carbonate, primarily Pb and Cu were immobilized. The studied soil can be characterized by high amount of organic matter, clay accumulation horizon, as well as calcareous subsoil. This kind of profile development makes soils able to immobilize a significant metal pollution.  相似文献   

10.
《Applied Geochemistry》2004,19(6):899-916
A 7 step sequential extraction procedure has been conducted on a podzolic soil profile from the Vosges Mountains in order to determine the ability of several elements to be released to the environment. Very little Si, K and Al were extractable (<10% of the total soil concentration) but larger proportions (> 10% of the total soil concentration) of Ca, P, metals (Fe, Pb), REE and actinides (Th, U) could be leached. For each element, preferential binding sites can be recognized. High recovery of P and Ca in the acid soluble fraction (AS) suggests that phosphate minerals are highly involved in this step of the extraction. Organic matter appears to control the adsorption of Ca, Fe, Th, U and REE, even at depths in the soil profile where organic matter content is particularly low (0.5%). Weak acid leaching experiments (with HCl and acetic acid 0.001 N) were also performed in order to characterize the origin of the insoluble material in this soil profile. The leachable REE distributions indicate that a large part of the labile REE in the surface horizon has an atmospheric origin whereas at greater depth phosphate mineral (apatite) alteration is the main factor controlling REE release in the leachate. The study further suggests that adsorbed material holding actinides and REE are not strictly the same. So, caution should be taken when using REE as analogues for actinides in soils systems.  相似文献   

11.
To carry out comparative geochemical investigation of refractory and reactive metals in different oceanic settings covering different θ-S characteristics, productivity, dissolved oxygen profiles, water and sediment discharge, etc., we have determined the vertical profiles of dissolved (<0.04 μm) Al, In and Ce, as well as 210Pb and 210Po in the eastern Indian Ocean (from 40°S in the Southern Ocean to 8°N in the Bay of Bengal) and the Southeast Asian Seas. In the Antarctic Circumpolar Region, the concentrations of these refractory metals are very low, presumably due to very low the atmospheric input and intensified scavenging. Resemblance in the vertical profiles of these metals is often seen in some other stations. However, there are also significant differences among their distributions, for example, in the magnitude of surface enrichment caused by the external input from eolian and fluvial-coastal sources. Comparison of Al distributions in surface waters with those of atmospherically derived 210Pb suggests the relative importance of eolian input over fluvial-coastal sources. Fluvial and coastal input appears to be insignificant for dissolved In, but may be important for Ce. The mean residence time of Al in the surface mixed layer was estimated to be ∼2 years which is similar to that of 210Pb.In the intermediate and deep waters, the concentrations of each element vary with depth and location. The range of variation is in the order of Al>Ce>In, depending upon particle reactivity. Although dissolved Al decreases along the water trajectory by particle scavenging, variations of dissolved In and Ce are relatively small which may be due to less scavenging for both elements. Compared with significantly high (>4 pM) dissolved Ce throughout the water column in the Bay of Bengal, dissolved Al concentration remains low, suggesting that it has higher affinity to particles and hence is scavenged by sinking particulate matter. This is consistent with the observation that the dissolved Al in the Antarctic Intermediate Water (AAIW) decreases from 4 to 6 nM in the 30°S Perth Basin to <0.7 nM in the 10°S West Australia Basin along its trajectory. Using the chlorofluorocarbons (CFCs) ventilation age of AAIW (Fine, 1993), the mean residence time of Al in the intermediate and deep waters in the eastern Indian Ocean is estimated to be <17 yr, approximately the same as that of 210Pb (10-15 yr). In the semiclosed basins of Southeast Asia, the distributions of Al, In and Ce are also very unique. In the South China Sea, there is a strong sediment source for dissolved In and Ce during the deepwater passage through the Luzon Strait.  相似文献   

12.
Published experimental data for Al(III) and Fe(III) binding by fulvic and humic acids can be explained approximately by the Humic Ion-Binding Model VI. The model is based on conventional equilibrium reactions involving protons, metal aquo ions and their first hydrolysis products, and binding sites ranging from abundant ones of low affinity, to rare ones of high affinity, common to all metals. The model can also account for laboratory competition data involving Al(III), Fe(III) and trace elements, supporting the assumption of common binding sites. Field speciation data (116 examples) for Al in acid-to-neutral waters can be accounted for, assuming that 60-70 % (depending upon competition by iron, and the chosen fulvic acid : humic acid ratio) of the dissolved organic carbon (DOC) is due to humic substances, the rest being considered inert with respect to ion binding. After adjustment of the model parameter characterizing binding affinity within acceptable limits, and with the assumption of equilibrium with a relatively soluble form of Fe(OH)3, the model can simulate the results of studies of two freshwater samples, in which concentrations of organically complexed Fe were estimated by kinetic analysis.The model was used to examine the pH dependence of Al and Fe binding by dissolved organic matter (DOM) in freshwaters, by simulating the titration with Ca(OH)2 of an initially acid solution, in equilibrium with solid-phase Al(OH)3 and Fe(OH)3. For the conditions considered, Al, which is present at higher free concentrations than Fe(III), competes significantly for the binding of Fe(III), whereas Fe(III) has little effect on Al binding. The principal form of Al simulated to be bound at low pH is Al3+, AlOH2+ being dominant at pH >6; the principal bound form of Fe(III) is FeOH2+ at all pH values in the range 4-9. Simulations suggest that, in freshwaters, both Al and Fe(III) compete significantly with trace metals (Cu, Zn) for binding by natural organic matter over a wide pH range (4-9). The competition effects are especially strong for a high-affinity trace metal such as Cu, present at low total concentrations (∼1 nM). As a result of these competition effects, high-affinity sites in humic matter may be less important for trace metal binding in the field than they are in laboratory systems involving humic matter that has been treated to remove associated metals.  相似文献   

13.
Depth distribution profiles of environmental radionuclides (137Cs and 210Pb) have been investigated in soil to elucidate the underlying environment of semi-natural temperate deciduous and/or coniferous forest soils in Slovenia (?irovski vrh, Idrija, Ko?evski Rog, Pohorie, Gori?nica and Rakitna). Surface enrichment of both nuclides was observed at all the sites investigated in this study, suggesting that the soils had undergone little natural or anthropogenic disturbance for at least the last several decades. Apparent annual burial rates of 137Cs (0.1–0.2 cm y??1) were estimated to be about 1.3 times higher than those of 210Pb at individual sites of different lithology, which suggests strong affinity of 210Pb to soil organic matter. Variability of the vertical distribution profiles of these nuclides depends not only on “in situ” pedology but also on geographical and meteorological conditions, especially precipitation and wind direction.  相似文献   

14.
Size fractionation of ~40 major and trace elements (TE) in peat soil solutions from the Tverskaya region (Russia) has been studied using frontal filtration and ultrafiltration through a progressively decreasing pore size (5, 2.5, 0.22 μm, 100, 10, 5, and 1 kD) and in situ dialysis through 6–8 and 1 kD membranes with subsequent analysis by ICP-MS. In (ultra) filter-passed permeates and dialysates of soil solutions, Fe, Al, and organic carbon (OC) are well correlated, indicating the presence of mixed organo-mineral colloids. All major anions and silica are present in “dissolved” forms passed through 1 kD membrane. According to their behavior during filtration and dialysis and association with mineral or organic components, three groups of elements can be distinguished: (i) species that are weakly affected by size separation operations and largely (>50–80%) present in the form of dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, As, Mn) with some proportion of small (1–10 kD) organic complexes (Ca, Mg, Sr, Ba), (ii) biologically essential elements (Co, Ni, Zn, Cu, Cd) mainly present in the fraction smaller than 1 kD and known to form strong organic complexes with fulvic acids, and, (iii) elements strongly associated with aluminum, iron and OC in all ultrafiltrates and dialysates with 30–50% being concentrated in large (>10 kD) colloids (Ga, Y, REEs, Pb, Cd, V, Nb, Sn, Ti, Zr, Hf, Th, U). For most trace metals, the proportion in the colloidal fraction correlates with their first hydrolysis constant. This implies a strong control of negatively charged oxygen donors present in inorganic/organic colloids on TE distribution between aqueous solution and colloid particles. It is suggested that these colloids are formed during plant uptake of Al, Fe, and TE from mineral matrix of deep soil horizons and their subsequent release in surface horizons after litter degradation and oxygenation on redox or acid/base fronts. Dissolved organic matter stabilizes Al/Fe colloids and thus enhances trace elements transport in soil solutions.  相似文献   

15.
A record of the impacts of major hurricanes on sediment stratigraphy and composition in subtropical ecosystems has been preserved in the lower Everglades and Florida Bay. These impacts were observed in discontinuous layers of sediment that were identified from high-resolution, vertical profiles of excess 210Pb and 137Cs. Discontinuities were found at different geographic locations and at two to three different depths in the sediment column; however, the layers were each deposited within time periods that corresponded with the passing of category 3–5 hurricanes during 1960, 1948 and 1935. A simple mass balance model for excess 210Pb was used to show net changes of ±20–100% in excess 210Pb inventory that resulted from sediment disturbances of <1 to >22 cm. Abrupt shifts in sediment composition were often observed in hurricane-impacted layers. Ratios of organic (C/P) were four- to fivefold higher than normal in post-hurricane layers of sediment at open bay sites. These layers are phosphorus poor and seem to reflect preferential decomposition of organic P relative to organic C in association with hurricanes. The net effect is for major hurricanes to redistribute sediment, organic matter and nutrients.This revised version was published online in July 2003.  相似文献   

16.
Radiocarbon Dating of Soil Organic Matter   总被引:2,自引:0,他引:2  
Radiocarbon ages of soil organic matter are evaluated with a model which incorporates the dynamics of the14C content of soil organic matter. Measured14C ages of soil organic matter or its fractions are always younger than the true ages of soils due to continuous input of organic matter into soils. Differences in soil C dynamics due to climate or soil depth will result in significantly different14C signatures of soil organic matter for soils of the same age. As a result, the deviation of the measured14C age from the true age of soil formation could differ significantly among different soils or soil horizons. Our model calculations also suggest that14C ages of soil organic matter will eventually reach a steady state provided that no climatic or ecological perturbations occur. Once a soil or a soil horizon has reached a steady state,14C dating of soil organic matter will provide no useful information regarding the age of the soil. However, for soils in which steady state has not been reached, it is possible to estimate the age of soil formation by modeling the measured14C contents of soil organic matter. Radiocarbon dating of buried soils could, in general, overestimate the true age of the burial by as much as the steady-state age of the soil or soil horizon.  相似文献   

17.
Surface soil and sediment samples collected along a forest-brackish marsh-salt marsh transect in a southeastern U.S. estuary were separated into three different fractions (sand, macro-organic matter, and humus) based on size and density. Elemental, stable carbon isotope, and lignin analyses of these samples reveal important contrasts in the quantity, composition, and sources of organic matter, between forest and marsh sites. Elevated nitrogen contents in humus samples suggest nitrogen incorporation during humification is most extensive in forest soils relative to the marsh sites. The lignin compositions of the macro-organic and humus samples reflect the predominant type of vegetation at each site. Lignin phenol ratios indicate that woody and nonwoody litter from, gymnosperm and angiosperms trees (pines and oaks) is the major source of vascular plant-derived organic matter in the forest site and that angiosperm, grasses (Juncus andSpartina) are the major sources of lignin at the marsh sites. The phenol distributions also reveal that oxidative degradation of lignin is most extensive in the forest and brackish marsh zones whereas little lignin decay occurs in the salt marsh samples. In forest soils, most organic matter originates from highly altered forest vegetation while at the brackish marsh site organic matter is a mixture of degradedJuncus materials and microbial/algal remains. Organic matter in the salt marsh appears to be composed of a more complex mixture of sources, including degradedSpartina detritus as well as algal and microbial inputs. Microbial methane oxidation appears to be an important process and a source of13C depleted organic carbon in subsurface sediments at this site.  相似文献   

18.
A sediment core from Guanabara Bay (Brazil) was analyzed for 210Pb dating, grain size, total organic carbon (TOC) and total nitrogen, carbon stable isotope ratio (δ13C), nitrogen stable isotope ratio (δ15N) and the metals Fe, Mn, Ni, Co, Cu, Pb, V and Zn, to assess the influence of land use changes on the aquatic system in a region for which large industrial and urban development is expected in the next few decades. To obtain baseline data for improving the monitoring of the expected increase in anthropogenic impacts from surrounding drainage basins, a multivariate analysis of data from different sediment layers was carried out to evaluate the dated sediment record. The geochemical data suggested three different sedimentary phases along the last 200 years. Before the 1880s, the highest clay and TOC contents were observed, where the C/N ratios and the δ13C values suggested a mixture of algal and terrestrial organic matter and the lowest concentrations of Co, Cu, Pb, V and Zn, for which background levels were estimated (4.6, 2.7, 14.9, 24.3 and 70.2 mg kg−1, respectively). From the 1880s to the 1950s, the metal concentrations and sand particles increased, but no change in organic matter quality was observed, reflecting a period of land use change, still without significant sewage input. After the 1950s, the sedimentation rate increased from 0.42 to 0.77 cm year−1 and increasing urban sewage input was evidenced by lower C/N ratios, higher δ15N, decrease of Fe and Mn concentrations and increased fluxes of metals and TOC, which showed a good relationship with population growth data.  相似文献   

19.
Different downstream variation patterns were observed for a range of bed sediment-borne metals (aqua regia-extractable fraction) in a subtropical stream system receiving acid mine drainage. Mine-originated Fe tended to be deposited in the acidic (mean pH < 4.9) upstream reach in forms of goethite and/or hematite. In contrast, other metals tended to be transported farther downstream and settled in a low-gradient reach with high pH (mean pH > 5.6). The peak of sediment-borne Al, Be, Ca, Cd, Co, Cu, La, Mn, Ni and Zn corresponded very well with the peak of the sediment-borne organic matter, suggesting a close association between the water-borne organic colloids and the inorganic metal oxides/hydroxides during their transport. The marked increase in the sediment-borne Al and Pb started more upstream than the other metals, suggesting that the water-borne Al and Pb were more susceptible to pH rise-induced precipitation, as compared to the other metals. It appeared that the organic colloids played no important role in Pb transport and settlement. The iron precipitates had a limited role to play in affecting the transport and fates of other metals since they were predominantly formed and deposited in the acidic reach, which made them incapable of scavenging cationic metals by co-precipitation or adsorption.  相似文献   

20.
福建龙海土壤重金属含量特征及影响因素研究   总被引:1,自引:0,他引:1  
为有效预防土壤重金属生态风险,以福建龙海市表层土壤为研究对象,应用经典统计分析、随机森林等方法,研究重金属元素含量特征及其影响因素。结果表明:(1)第四纪冲洪(海)积成因水稻土中多数重金属元素含量较高;(2)燕山期中酸性岩风化形成的残坡积红壤中重金属元素活动态含量较高;(3)As、Cu、Ni形态含量与全量相关性较好,而Cd、Cr、Hg的多数形态含量与全量相关性较差;(4)除元素全量外,土壤有机质对弱有机结合态重金属(不包括Ni、Pb元素)以及离子交换态、碳酸盐结合态Cd、Zn有重要影响,阳离子交换量对各形态Ni,(Fe×Al)/Si对各形态Cu具有重要影响,而土壤成因、土壤类型对重金属形态组成的影响较小。研究表明土壤重金属形态组成及其富集区与其全量不尽一致,土壤重金属生态风险评价应考虑土壤重金属形态分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号