首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
针对一类具有状态约束的非严格反馈高阶非线性系统,研究一种自适应模糊有限时间跟踪控制问题.首先,利用模糊逻辑系统逼近不确定性非线性函数,在此基础上,采用障碍Lyapunov函数,解决状态约束问题,通过障碍加幂积分方法和反步递推技术,提出了一种有限时间控制设计方法.在有限时间Lyapunov稳定意义下,严格证明闭环系统半全局实际有限时间稳定且系统的状态不超出给定的约束边界,并实现了有限时间跟踪控制目标.最后,仿真研究进一步验证了所提出控制方法的有效性.  相似文献   

2.
本文主要研究了考虑预设性能的航天器交会对接中的近距离悬停控制问题.针对追踪航天器近距离悬停控制问题,首先基于追踪航天器的姿轨耦合模型设计了线性滑模控制器实现了近距离悬停任务.在此基础上,为对系统收敛过程中系统状态的暂态性能进行约束,设计了基于预设性能的滑模控制器.同时,为减少系统状态的收敛时间,针对预设性能中的性能函数,采用了一种有限时间收敛的性能函数代替传统的性能函数,并改进了滑模控制器的结构.最后通过仿真进行验证,并对比三种控制策略,结果表明所设计的航天器交会对接预设性能滑模控制律具有理想的控制性能.  相似文献   

3.
本文研究了具有量化输入信号和未知扰动的非线性系统的有限时间自适应输出反馈动态面控制问题.在控制设计过程中,利用模糊逻辑系统对系统中的非线性项进行逼近.然后引入一种滞回量化器来避免量化信号中的抖振,并且构造模糊观测器来估计系统中不可测的状态.为了提出一种有限时间控制策略,首先给出了半全局实际有限时间稳定的判据.在此基础上,将动态面控制技术与反步法相结合,设计了自适应模糊控制器.该控制器不仅能保证跟踪误差在有限时间内收敛到原点的一个小邻域,而且可以保证闭环系统中所有信号的有界性.最后通过一个仿真实例验证了该控制方法的有效性和可行性.  相似文献   

4.
提出了一种级联控制算法解决多无人艇(USVs)系统的分布式轨迹跟踪问题.这种控制算法可以分为两层:第一层是基于采样信息的分布式估计器,主要用于估计领航者的期望轨迹;第二层是每个无人艇的本地控制器,主要是结合滑模控制与神经网络径向基函数,在系统具有欠驱动、参数不确定性和扰动等因素的情况下,使其状态跟踪期望轨迹的本地估计值.为了求解上述跟踪控制问题,基于李雅普诺夫理论与级联系统理论,推导得到了所有无人艇位置状态收敛到期望轨迹的充分条件,并通过仿真结果验证了所提出控制方法的有效性与正确性.  相似文献   

5.
研究了有外界热源作用下的有限振幅超长波,首先利用Hamilton函数及总能量变化方法讨论了有限振幅周期性和孤立性超长波的存在条件。然后用Hamilton函数为运动不变量性质与函数逼近法求得波的解析式。同时指出,不考虑热源影响的有限振幅超长波不会产生孤立波解,对水平散度也无约束;但引入热源后,由能产生孤立波解,并且对水平散度有一定约束。  相似文献   

6.
本文研究权重平衡有向网络下分布式约束优化问题的求解,其中网络的全局目标函数是由每个智能体的局部目标函数的和构成,全局的约束是由每个智能体的局部约束的交构成.为了分布式求解该问题的最优解,首先引入智能体的局部共轭函数将其转换为Fenchel对偶问题.其次,从Fenchel对偶问题出发,提出一类基于奇异摄动系统的分布式连续时间算法.在局部目标函数和其梯度分别满足强凸和Lipschitz(李普希兹)连续的情况下,结合凸分析方法和Lyapunov(李雅普诺夫)稳定性理论,结果表明所提算法能够获得原问题和对偶问题的最优值.最后,数值仿真进一步验证了所提算法的有效性.  相似文献   

7.
机械臂在航空航天、服务等领域的应用越来越广泛,其研究也越来越深入.相比于刚性机械臂,柔性机械臂质量轻、能耗小,具有更好的性能.但是,由于柔性机械臂本身的结构与材料具有特殊性,其在运动过程中会产生弹性形变与振动,这就给机械臂的定位、轨迹跟踪带来了困难,因此对其振动抑制的研究具有重要意义.本文利用假设模态法对单连杆柔性机械臂系统进行建模,通过李雅普诺夫直接法实现了闭环系统的稳定性.由于一些实际问题对控制系统的状态量有特殊要求,因此采用正切函数形式的障碍李雅普诺夫策略来处理输出约束问题,之后利用神经网络控制方法来逼近系统的不确定性,通过李雅普诺夫法对闭环系统的稳定性进行了分析,并基于Matlab平台设计仿真、基于Quanser实验平台进行实验,对控制器的控制性能进行了验证.  相似文献   

8.
本文研究了一类具有随机时滞的受扰马尔科夫跳变线性系统的有限时间稳定性问题.通过引入服从伯努利分布的随机变量刻画了时滞变化的随机特性.本文首先分析了系统的随机有限时间稳定性,基于分析结果设计了反馈控制器,使得系统状态在马尔科夫跳变、随机时滞和外界扰动等并存时,在给定时间内收敛于某一区域而不超过指定的上界值,并可获得该上界的具体值.最后通过数值仿真验证了所提算法的有效性.  相似文献   

9.
本文集中在带有部分状态约束的非线性单输入单输出系统的自适应控制器设计上.考虑了非对称死区的非线性输入特性,选取障碍李雅普诺夫函数用来阻止部分受约束的状态违反约束条件.根据障碍李雅普诺夫函数反步法,解决了该类系统的输出跟踪问题,同时也处理了死区非线性带来的影响.针对下三角结构的非线性系统,设计了自适应控制器,证明了闭环系统所有信号都是有界的,同时保证了系统输出可以跟踪上参考信号.最后,仿真结果表明了所提方法的有效性.  相似文献   

10.
轮式机器人执行巡逻、播种和工业生产等任务是一个强非线性的间歇过程.针对重复运行的轮式机器人轨迹跟踪问题,本文提出了一种基于数据驱动的高阶迭代学习控制算法.首先,对轮式移动机器人的模型进行推导设计,并对推导得到的状态空间形式的离散时间模型利用基于状态转移的迭代动态线性化方法,将轮式机器人系统转化为线性输入输出数据模型;其次,设计高阶迭代优化目标函数得到控制律,并利用参数更新律估计线性输入输出数据模型中的未知参数.控制器的设计和分析只使用系统的输入输出数据,不包含任何显式的模型信息.通过采用高阶学习控制方法,在控制律中利用更多之前迭代的控制输入信息,提高了控制性能.最后,仿真结果验证了该方法在轮式机器人轨迹跟踪控制中的有效性.  相似文献   

11.
本文研究了一种能够独立控制位置和姿态的可倾转四旋翼飞行器,在建立了系统动力学模型的基础上,针对可倾转四旋翼飞行器系统存在的强输入非线性问题,采用了非线性分离策略,构造中间控制量,将该强非线性系统分离为线性动态环节和非线性静态环节,并仅针对线性动态环节设计了计算量小、易于硬件实现的线性二次型调节器(LQR),然后再通过反解输入非线性环节将中间控制量分配到实际的控制量——旋翼倾转角和电机转速.仿真实验结果表明,基于非线性分离策略设计的LQR飞行控制器能够实现对可倾转四旋翼稳定控制,很好地独立追踪位置和姿态期望.  相似文献   

12.
本文研究了基于领航跟随法的多机器人系统编队控制问题.首先,基于队形约束,给出跟随者期望的轨迹,将编队问题转化为单个跟随者的轨迹跟踪问题.在此基础上,基于双幂次滑模趋近律,设计了跟随者的线速度和角速度控制器,保证了跟踪误差能够快速收敛到零,从而保证了编队队形的稳定.最后,通过仿真验证了所提方法的有效性.  相似文献   

13.
CINRAD/SA雷达伺服电机连续故障诊断分析   总被引:1,自引:0,他引:1  
CINRAD/SA天气雷达投入业务运行以来,在天线伺服系统方面出现了很多次故障,而直流方位电机是天线伺服系统的主要组成部分也是发生故障较多的部件之一。2014年福建长乐CINRAD/SA天气雷达在重大天气保障过程中,连续发生方位电机卡死造成雷达停机和测速机性能降低引起天线转速不稳造成雷达产品异常的故障;根据天线控制信号流程,通过运行雷达RDASOT测试程序、测量直流方位电机阻值、测量测速机反馈电压等方法,分析其故障的成因,对雷达伺服直流电机故障分析及解决方法有重要的指导作用。  相似文献   

14.
针对数控火焰切割机自动调高系统的特点和要求,采用遗传算法对其位置调节器PID参数进行全局优化辨识,有效地解决了直流伺服电机的控制精度和快速性的问题.仿真结果表明,与传统的参数辨识法相比,遗传算法参数寻优使自动调高系统的动态性能大幅提高,具有很强的鲁棒性.  相似文献   

15.
首先分析了磁悬浮球绕组磁力线扭曲特性,构建了含轴向和水平两自由度的磁悬浮球运动模型,采用模型转换,将系统中的匹配性和非匹配性干扰统一重构为匹配性干扰,建立新的系统状态空间方程;其次,针对悬浮气隙中气隙速度与加速度难以获取、干扰实时性观测困难的问题,提出了含干扰重构的气隙速度、加速度滑模观测器,并基于此观测器设计了滑模跟踪控制器;最后搭建含干扰重构的滑模状态观测和跟踪协同控制仿真平台,结果表明所提控制策略在动态响应速度、跟踪误差和抗干扰能力性能方面优于传统PID控制.  相似文献   

16.
针对一类低轨道磁控立方星,提出一种在线加权式多模型自适应跟踪控制方法,使得卫星姿态能够根据指令实现较大角度的机动,并将误差保持在容许的范围内,达到满意的动态性能.首先,在卫星的几个姿态平衡点处建立控制系统模型,通过模型匹配度指标值,在线调整加权式多模型控制算法;其次,在多模型控制回路中引入动态自适应神经网络,充分利用其结构和参数均可以在线自适应调节的特点,以消除卫星在轨运行时受到的地球磁场变化的影响,并抑制不确定的外部干扰,提高系统鲁棒性能;最后,以某立方星为对象,进行仿真验证,结果表明所提方法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号