首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of a millennial‐scale bipolar climate seesaw has been documented in detail for the last glacial period and Termination. There is, however, debate whether it occurs during interglacials and if it does what influence it could have on future climate. We present here new evidence from a North East Atlantic Ocean deep‐sea core which supports the hypothesis for a Holocene bipolar climate seesaw. BENGAL Site 13078#16, from the Porcupine Abyssal Plain, is 4844 m deep and situated at the North Atlantic Deep Water and Antarctic Bottom Water (AABW) interface. Planktic foraminiferal fragment accumulation rate data at this site is an indicator of coarse carbonate dissolution, which is highly sensitive to the incursion of under‐saturated AABW. Five dissolution peaks have been identified, which seem to occur approximately 500 a after each of the North Atlantic 'Bond' ice rafting pulses, suggesting a subsequent subtle shallowing of AABW. This indicates a possible lagged climatic link between North East Atlantic surface water conditions and AABW production in the Southern Ocean during the Holocene. This provides the first tentative evidence that there was a Holocene bipolar climate seesaw and that the deep ocean was involved. This study also suggests that extremely sensitive locations need to be sought as the Holocene bipolar climate seesaw seems to be very subtle compared with its glacial counterparts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
温盐环流是由海水温度、盐度差异驱动的全球洋流循环系统。在气候系统中,它对全球热量输送起到了十分重要的作用。在亚轨道尺度(千年时间尺度)上,温盐环流的改变导致了一系列快速的气候变化,因此备受关注。在构造时间尺度(百万年时间尺度)上,古海洋记录和数值模拟揭示出,温盐环流的反转对新生代气候也产生了非常显著的影响。在新生代,温盐环流由“南大洋深层水主控型”向“北大西洋深层水主控型”反转。这一反转改变了全球的热量输送,使得南半球强烈变冷,并有可能导致南极东部永久冰盖的形成。在这一反转事件中,热带海道的作用更加重要。  相似文献   

3.
INTRODUCTIONThermohaline circulation(THC)is normally de-fined as the density-driven global-scale oceanic circu-lation,which flows northwardin the upper layer andsouthward in the deeper layer in the Atlantic.Itplays ani mportant role in the global meridional heatand the freshwater transports(Marotzke,2000).Thus,changes in the THC alter the global oceanheat transport and affect the global cli mate(Broeck-er,1991).The increase in the concentration of greenhousegases will reduce the effici…  相似文献   

4.
千年尺度气候变率的研究   总被引:5,自引:0,他引:5  
2 0世纪后期 ,千年 (ka)尺度气候变率的研究取得了重要的进展 ,这表现在以下几个方面 :(1)格陵兰冰芯及深海沉积证明 ,在末次冰期中普遍存在平均周期为 1 5ka的循环 ,有人认为全新世也存在这种循环 ,小冰期就是最近一个循环的冷期。 (2 )每个循环由 1个相对暖期 (间冰阶 )及 1个冷期(冰阶 )组成 ,称为Dansgaard/Oeshger循环 (D/O循环 )。 (3)连续几个D/O循环的冰阶气温愈来愈低 ,海因里希事件 (H事件 )就发生在最冷的冰阶之后。 (4 )自 15kaBP到 6 8kaBP共确定出 6次H事件 ,分别称为H1…H6,有的作者认为新仙女木事件 (YD)与H事件形成机制近似 ,可以称为H0 。 (5 )D/O循环与H事件的成因 ,目前尚无定论。但热盐环流 (THC)变化的学说得到了较多作者的承认。这个学说认为 :北大西洋北部的大量融冰使海面为冷的淡水控制 ,影响了大传送带中海水的下沉 ,从而削弱了深水的形成。北大西洋THC减弱 ,使向北输送的热量减少 ,使北大西洋气候更寒冷。一旦深水形成再次增加 ,完成一个D/O循环。H事件形成的机制与之类似 ,不过过程变化更为激烈。 (6 )这样 ,THC有 3种模态 :现代模 (北大西洋有两个泵 )、冰阶模 (一个泵 ) ,及H事件 (无泵 )。 (7)海洋环流模式已经对THC的变化及模态之间的转换进行了模拟 ,至少在一定程度?  相似文献   

5.
As a connection region between North Atlantic and Arctic Oceans, the Nordic Sea plays a critical role in global climate system. In the Nordic Seas, surface water converts into intermediate water and deep water after cooling and other effects. These waters transport southward, and enter into North Atlantic as a form of overflow, therefore, they are the main source of the North Atlantic Deep Water(NADW), which play a key role in global ocean conveyor. The causes and processes of the deep water formation in the Nordic Seas are still uncertain. Based on a review of current and historical research results of the deep water in the Nordic Seas, the most important process for deep water formation convection is addressed. Factors and physical processes that may have impact on deep water formation are summarized. The transport of deep water in the Nordic Seas is summed up. Multi year variation of the deep water is described with the aim of giving some instructions and research directions to the readers.  相似文献   

6.
《Quaternary Science Reviews》2007,26(5-6):732-742
The radiocarbon reservoir age of high latitude North Atlantic Ocean surface water is essential for linking the continental and marine climate records, and is expected to vary according to changes in North Atlantic deep water (NADW) production. Measurements from this region also provide important input and/or tests of oceanic radiocarbon using 3-D global ocean circulation models. Here, we present a surface water radiocarbon reservoir age record of the high latitude western North Atlantic for the deglacial period via the use of fossil cold-water corals growing in waters that are rapidly exchanged with nearby surface waters. The reservoir age of high latitude North Atlantic surface waters was computed from the radiocarbon age difference between our radiocarbon calibration record (http://radiocarbon.LDEO.columbia.edu) and our marine radiocarbon data. 230Th/234U/238U dates provide the absolute coral ages. Our high latitude North Atlantic Ocean reservoir age data combined with recalculated reservoir ages based on published coexisting terrestrial and marine material and Vedde ash radiocarbon dates from central and eastern North Atlantic show modern values (380±140 year, n=14) during the Bolling and Allerod warm period and a 200 year increase in reservoir age (590±130 year, n=10) during the entire Younger Dryas (YD) cold episode. The reservoir age then decreased to 270±20 year (n=2) at the Preboreal/YD transition, although the dates are too sparse for us to be confident in this estimate. We are not able to resolve the timing of the transition to increased reservoir ages from the mid-Allerod to the YD due to the relatively small change and correspondingly large uncertainty in the estimates. The atmospheric Δ14C record derived from our atmospheric radiocarbon record displays a 40 per mil increase from 12,900 to 12,650 cal years BP, coincident with the shift to high reservoir ages in the early YD cold event. Intrusion of 14C depleted Antarctic Intermediate Water (AAIW) to the high latitude North Atlantic and reduction of NADW formation are possible causes for the coincident shift to high reservoir ages in the North Atlantic surface ocean and increased atmospheric Δ14C during the beginning of the YD event.  相似文献   

7.
At present the Nordic Seas are a key region of North Atlantic Deep Water (NADW) formation. Two alternative scenarios have been suggested by some authors for the Last Glacial Maximum: (i) the Nordic Seas were permanently covered by sea ice, preventing the formation of NADW, or (ii) that they were seasonally free of ice and that deep water formation did occur. A modified scenario is presented here based on parallel ocean circulation modelling results from the GFDL primitive equation model and a planetary geostrophic model. It is suggested that the glacial Nordic Seas were at least seasonally ice free, but it is observed that there was never deep water formation from the surface; rather it occurred only in the North Atlantic south of 40°–50°N. North of 40°N, the weaker LGM northward flowing thermohaline conveyor is subducted below a reverse conveyor which occurred to a depth of over 1000 m. Various modelling experiments presented here indicate that the reversed conveyor was primarily caused by the colder conditions of the glacial North Atlantic that led to far stronger zonality of glacial analogue of the North Atlantic Current.  相似文献   

8.
As a connection region between Arctic and North Atlantic oceans, the Nordic seas play a critical role in global climate system. The density waters overflow through Greenland-Scotland Ridge from the Nordic seas, as the main source of the North Atlantic Deep Water (NADW), which plays a key role in global ocean conveyor. The causes and processes, which give some instruction of the overflow variation are still uncertain. Based on a review of current and historical research results of modern Nordic seas overflows, hydrological and flux characteristics and variation features of overflows through three channels, which are Faroe-Shetland Channel, Iceland-Faroe Ridge and Denmark Strait, from Nordic sea were addressed separately. The origins of overflows water and factors and physical processes that may have impact on the three overflows were also analyzed separately. Intense mixing in overflow through Faroe-Shetland Channel was discussed. At last, the changing mechanism of the whole overflow from Nordic seas and relationships among overflows through different channels were summed up. The aim of this paper is to give some instructions and research directions to the internal readers.  相似文献   

9.
南极和北极海域的深海钻探(DSDP)和大洋钻探(ODP)研究所取得的成就是举世瞩目的,为人类研究过去全球变化打开了新的视野。它们揭示了北大西洋高纬度海区新近纪的古海洋学和古气候的演化历史,发现了早更新世"41ka世界"千年尺度的气候波动,以及冰期表层水温与深层水的耦合颤动,说明冰期旋回中冰消期气候的不稳定性。检验了新近纪环南极洋流的形成历史,并揭示了南极新生代的气候变冷和冰盖的演变历史,以及证实了南大洋温度变化领先于全球冰量的变化。2004年北极罗蒙诺索脊的综合大洋钻探(IODP)将宣告科学探索时代的到来,其研究将重建北冰洋新生代环境变化和气候的演变历史,展示北冰洋在全球气候变化中的作用。  相似文献   

10.
In the modern South Atlantic the transition between deep water and bottom water is marked by a clear change in the associated benthonic foraminiferal fauna. uvigerina and Globocassidulina characterize oxygen-poor Circumpolar Deep Water which has long been isolated from the surface. Planulina and miliolids are found associated with the more newly formed, oxygen-rich North Atlantic Deep Water. Antarctic Bottom Water is characterized by “Epistominella” umbonifera. Analysis of the benthonic foraminiferal faunas in two sediment cores recovered from the Vema and Hunter Channels in the western South Atlantic shows that the level of the transition between deep and bottom waters shallowed sharply about 700,000 yr ago. This rise indicates a sharp, sustained increase in the volume of bottom water flowing through the South Atlantic after this time. Prior to about 700,000 yr ago, the amount of Antarctic Bottom Water entering the western South Atlantic was greatly reduced and Circumpolar Deep Water apparently accounted for the bulk of northward flow. Production of southward-flowing North Atlantic Deep Water seems not to have been affected. The timing of this change in circulation regime suggests a possible causal link to similar changes in records of terrestrial and sea-surface climate.  相似文献   

11.
Oxygen- and carbon-isotopic analyses have been performed on the benthic foraminifer Planulina wuellerstorfi in seven Late Quaternary cores from the Vema Channel-Rio Grande Rise region. The cores are distributed over the water-depth interval of 2340 to 3939 m, which includes the present transition from North Atlantic Deep Water (NADW) to Antarctic Bottom Water (AABW).The carbon-isotopic records in the cores vary as a function of water depth. The shallowest and deepest cores show no significant glacial-interglacial difference in δ13C. Four of the five cores presently located in the NADW have benthic foraminiferal δ13C that is lower during glacial isotopic stages. Based on bathymetric gradients in δ13C, we conclude that, like today, there were two water masses present in the Vema Channel during glacial intervals: a water mass enriched in 13C overlying another water mass depleted in 13C. The largest gradient of change of δ13C with depth, however, occurred at 2.7 km, ~ 1 km shallower than the present position of this gradient.On the basis of paleontologic and sedimentologic evidence, we consider it unlikely that the NADW:AABW transition shallowed to this level. Reduced carbon-isotopic gradients between the deep basins of the North Atlantic and Pacific Oceans during the last glaciation suggest that production of NADW was reduced. Lower production of NADW may have modified the local abyssal circulation pattern in the Vema Channel region.  相似文献   

12.
This study assesses retrospective decadal prediction skill of Sea Surface Temperature (SST) variability in initialized climate prediction experiments (INT) with the Beijing Climate Center Climate System Model (BCC_CSM1.1). Ensemble forecasts were evaluated using observations, and compared to an ensemble of uninitialized simulations (NoINT). The results show as follows: ①The warming trend of global mean SST simulated by the INT runs is closer to the observation than that in the NoINT runs.②The INT runs show high SST prediction skills over broad regions of tropical Atlantic, western tropical Pacific and tropical Indian Oceans. ③ In the North Pacific and the east-central tropical Pacific Ocean, the prediction skills are very weak, and there are few improvements coming from the initialization in the INT runs. ④ In the southern Indian Ocean, the prediction skills of the INT runs are significantly larger than that of the NoINT runs, with the maximum skill at the 3~6 and 4~7 years lead time. The above-mentioned conclusions are similar to the results of other climate models. However, the prediction skill in the North Atlantic Ocean is much lower than that of other models, especially in the subpolar region. The low skills in the Atlantic Ocean may be attributed to the misrepresentation of the lead-lag relationship between the Atlantic meridional heat transport and the SST in the BCC_CSM1.1.  相似文献   

13.
Using results from coupled climate model simulations of the 8.2 ka climate event that produced a cold period over Greenland in agreement with the reconstructed cooling from ice cores, we investigate the typical pattern of climate anomalies (fingerprint) to provide a framework for the interpretation of global proxy data for the 8.2 ka climate event. For this purpose we developed an analysis method that isolates the forced temperature response and provides information on spatial variations in magnitude, timing and duration that characterise the detectable climate event in proxy archives. Our analysis shows that delays in the temperature response to the freshwater forcing are present, mostly in the order of decades (30 a over central Greenland). The North Atlantic Ocean initially cools in response to the freshwater perturbation, followed in certain parts by a warm response. This delay, occurring more than 200 a after the freshwater pulse, hints at an overshoot in the recovery from the freshwater perturbation. The South Atlantic and the Southern Ocean show a warm response reflecting the bipolar seesaw effect. The duration of the simulated event varies for different areas, and the highest probability of recording the event in proxy archives is in the North Atlantic Ocean area north of 40° N. Our results may facilitate the interpretation of proxy archives recording the 8.2 ka event, as they show that timing and duration cannot be assumed to correspond with the timing and duration of the event as recorded in Greenland ice cores. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Oceanic surface and deep iron distribution and size fractionation were investigated on three cruises in the sub-tropical and tropical Atlantic Ocean. Detailed profiles and transects were collected and analyzed for “dissolved” Fe (DFe, 0.4 μm filtered) and “soluble” Fe (SFe, 0.02 μm filtered). The difference between DFe and SFe is inferred to be the “colloidal” fraction of Fe (CFe). SFe concentration distributions and profiles showed little variability in the Atlantic Ocean with slightly lower concentrations of SFe in the upper ocean than the relatively uniform concentrations observed in deep-water (≈0.3 to 0.4 nmol/kg). In contrast, variability in the Atlantic DFe was dominated by variability in CFe. DFe and CFe followed dust deposition trends, and observed surface maxima in DFe profiles were always due to maxima in the CFe fraction. Where dust deposition and surface DFe were low (i.e., the South Atlantic), the CFe fraction of DFe was low and frequently negligible in surface waters. Below the surface maxima in CFe and DFe, CFe always decreased to negligible levels at 30-80 m, remained low or negligible throughout the pycnocline, and increased with depth below the pycnocline. At a site located on the edge of the equatorial system (10°N), high DFe and CFe concentrations were associated with an oxygen minimum zone (OMZ) at depths of 130 to 1100 m. Deep-water DFe and CFe concentrations varied between water masses depending on the source, age, and path of the water masses. DFe in NADW decreased by 30% from the North Atlantic to the South Atlantic site with most of the decrease due to loss of CFe. At the South Atlantic site, NADW had higher DFe and a higher fraction of CFe than the Antarctic water masses.  相似文献   

15.
北极海冰与全球气候变化   总被引:7,自引:2,他引:7  
李培基 《冰川冻土》1996,18(1):72-80
最近有关北极海冰在全球气候系统中作用的研究发现,北冰洋边缘海域大洋深水的形成与海冰发育有关,海冰冻融过程对盐度层结具有重要影响,海冰变化可引起盐度突变层的灾变和热盐环流的突然停止,热盐环流的变化与北大西洋海冰10年际变化相联系,北大西洋气候的不稳定性与热盐环流变化密切相关。北极海冰-海洋-大气间耦合作用,使北极海冰构成了北大西洋和全球气候反馈循环中的重要环节。  相似文献   

16.
The Antarctic and the Arctic regions play a key role in global sea level change and carbon cycle, and reserve key information of the Cenozoic transition from a green-house to an ice-house Earth. They have become hot spots in earth science studies. The geological drilling projects in both polar regions (e.g., DSDP/ODP/IODP/ICDP) have achieved remarkable successes, which have freshened the knowledge of global environmental and climatic evolution. Along with the Cenozoic global cooling, the timing of glaciation was almost synchronous on both the Antarctic and the Arctic. Accompanied with the Antarctic ice sheet build-up and increased terrestrial weathering, the enhanced formation of Antarctic Bottom Water exerts significant impact on global ocean circulation. The volume of unstable West Antarctic Ice Sheet fluctuates during glacial-interglacial periods showing 40 ka obliquity cycles, its volume significantly reduced or collapsed during several peak interglacials or long warm intervals. The Southern Ocean plays a significant role modulating atmospheric CO2 concentration, global deep water circulation and nutrient distribution, productivity at different time scales. Sea level responses to the waxing and waning of polar ice sheets at different time intervals were tested, which provide valuable clue for predicting future sea level changes. The upcoming IODP drilling projects on polar regions will keep focusing on the high latitude ice sheet development, Southern Ocean paleoceanographic evolution, land-ocean linkages in the Arctic, and the impacts on the global climate, which will provide important boundary conditions for predicting global future climate evolution.  相似文献   

17.
Climate and ocean‐only models have shown that the ocean will respond abruptly to significant perturbations in surface forcing. Centennial‐scale oscillation is a characteristic of circulation in large semi‐enclosed ocean basins such as the Arctic, whereas millennial‐scale adjustment to changes in surface forcing has been found in the global ocean component of climate models. We show that the millennial time‐scale in climate models is likely to be intrinsic to the ocean through its presence in an ocean‐only model. The strength of the thermohaline circulation is shown to be very sensitive to the magnitude of ice albedo and, to a lesser extent, perturbation in the surface freshwater flux. Modelled glacial ocean circulation, in contrast to present‐day simulations, requires an enhanced freshwater flux over the northern Atlantic, even in its non‐Heinrich state, to obtain realistic overturning in the North Atlantic. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
《Comptes Rendus Geoscience》2014,346(11-12):279-286
The Southern Ocean is a major opal sink and plays a key role in the silica cycle of the world ocean. So far however, a complete cycle of silicon in the Southern Ocean has not been published. On one hand, Southern Ocean surface waters receive considerable amounts of silicic acid (dissolved silica, DSi) from the rest of the world ocean through the upwelling of the Circumpolar Deep Water, fed by contributions of deep waters of the Atlantic, Indian, and Pacific Oceans. On the other hand, the Southern Ocean exports a considerable flux of the silicic acid that is not used by diatoms in surface waters through the northward pathways of the Sub-Antarctic Mode Water, of the Antarctic Intermediate Water, and of the Antarctic Bottom Water. Thus the Southern Ocean is a source of DSi for the rest of the world ocean. Here we show that the Southern Ocean is a net importer of DSi: because there is no significant external input of DSi, the flux of DSi imported through the Circumpolar Deep Water pathway compensates the sink flux of biogenic silica in sediments.  相似文献   

19.
The transition from the Last Glacial Maximum to the Holocene was an internal of climate variability that was characterised by large spatial and temporal variations. Here we show that deglaciation warming in the northern Indian Ocean was initiated ca. 19 ka, which is contemporary with deglaciation warming in the Antarctica and Southern Ocean. A gradual warming occurred during the glacial/Holocene transition in the northern Indian Ocean, unlike the two‐step warming seen in Greenland and the North Atlantic. Synchronous deglacial warming ca. 19 ka in Antarctica and the northern Indian Ocean suggests a strong connection in the propagation of climate signals between Antarctica and the Indian Ocean, probably through the Indonesian Throughflow and/or Subantarctic Mode Water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The location and intensity of the austral westerlies strongly influence southern hemisphere precipitation and heat transport with consequences for human society and ecosystems. With future warming, global climate models project increased aridity in southern mid‐latitudes related to continued poleward contraction of the austral westerlies. We utilize Antarctic ice cores to investigate past and to set the stage for the prediction of future behaviour of the westerlies. We show that Holocene West Antarctic ice core reconstructions of atmospheric circulation sensitively record naturally forced progressive as well as abrupt changes. We also show that recent poleward migration of the westerlies coincident with increased emission of greenhouse gases and the Antarctic ozone hole has led to unprecedented penetration, compared with >100,000 years ago, of air masses bringing warmth, extra‐Antarctic source dust and anthropogenic pollutants into West Antarctica. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号