首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on hydrological processes are often emphasized in resource and environmental studies. This paper identifies the hydrological processes in different landscape zones during the wet season based on the isotopic and hydrochemical analysis of glacier, snow, frozen soil, groundwater and other water sources in the headwater catchment of alpine cold regions. Hydrochemical tracers indicated that the chemical compositions of the water are typically characterized by: (1) Ca? HCO3 type in glacier snow zone, (2) Mg? Ca? SO4 type for surface runoff and Ca? Mg? HCO3 type for groundwater in alpine desert zone, (3) Ca? Mg? SO4 type for surface water and Ca? Mg? HCO3 type for groundwater in alpine shrub zone, and (4) Ca? Na? SO4 type in surface runoff in the alpine grassland zone. The End‐Members Mixing Analysis (EMMA) was employed for hydrograph separation. The results showed that the Mafengou River in the wet season was mainly recharged by groundwater in alpine cold desert zones and shrub zones (52%), which came from the infiltration and transformation of precipitation, thawed frozen soil water and glacier‐snow meltwater. Surface runoff in the glacier‐snow zone accounted for 11%, surface runoff in alpine cold desert zones and alpine shrub meadow zones accounted for 20%, thawed frozen soil water in alpine grassland zones accounted for 9% of recharge and precipitation directly into the river channel (8%). This study suggested that the whole catchment precipitation did not produce significant surface runoff directly, but mostly transformed into groundwater or interflow, and finally arrived in the river channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Chemical studies have been carried out on a number of water wells from the Dibdiba Formation northeast of Kuwait. Water salinity of this formation ranges between 3,300 mg/l to 7,000 mg/l, increasing with depth. The water entrapped in Dibdiba Formation is mainly sodium chloride type which can be differentiated into three different groups according to the ranges of concentration of the main cations and anions. These groups are: (3331113) sodium chloride water type in which Cl > Na, group (3333113) sodium chloride water type in which Na > Cl. In both groups the sequence of dominant cations is Na > Ca > Mg. Group (3333111) sodium chloride water type has Na > Cl and the sequence of dominant cations is Na > Mg > Ca. Chemical ratios of Ca/Mg, Na/Cl, and C1/HCO3 were worked out for Dibdiba ground water. The ratio of Ca/Mg Dibdiba Formation ranges from 0.4 to 8.58, the ratio of Na/Cl ranges between 0.98 to 1.33, and the ratio of C1/HCO3 is 232. A plot of chemical analysis on a trilinear diagram shows that Dibdiba Formation ground-water chemical properties are dominated by alkalies (Na > Ca) and strong acid (Cl > SO4). Water chemistry may reflect the history of the flow path, indicating regional flow as shown by increasing Na+, Cl-, SO4 and where Ca+, Mg+ achieve equilibrium.  相似文献   

3.
The origin and the chemical and isotopic evolution of dissolved inorganic carbon (DIC) in groundwater of the Okavango Delta in semi-arid Botswana were investigated using DIC and major ion concentrations and stable oxygen, hydrogen and carbon isotopes (δD, δ18O and δ13CDIC). The δD and δ18O indicated that groundwater was recharged by evaporated river water and unevaporated rain. The river water and shallow (<10 m) groundwater are Ca–Na–HCO3 type and the deep (≥10 m) groundwater is Na–K–HCO3 to HCO3–Cl–SO4 to Cl–SO4–HCO3. Compared to river water, the mean DIC concentrations were 2 times higher in shallow groundwater, 7 times higher in deep groundwater and 24 times higher in island groundwater. The δ13CDIC indicate that DIC production in groundwater is from organic matter oxidation and in island groundwater from organic matter oxidation and dissolution of sodium carbonate salts. The ionic and isotopic evolution of the groundwater relative to evaporated river water indicates two independent pools of DIC.  相似文献   

4.
Stable isotopic (δDVSMOW and δ18OVSMOW) and geochemical signatures were employed to constrain the geochemical evolution and sources of groundwater recharge in the arid Shule River Basin, Northwestern China, where extensive groundwater extraction occurs for agricultural and domestic supply. Springs in the mountain front of the Qilian Mountains, the Yumen‐Tashi groundwater (YTG), and the Guazhou groundwater (GZG) were Ca‐HCO3, Ca‐Mg‐HCO3‐SO4 and Na‐Mg‐SO4‐Cl type waters, respectively. Total dissolved solids (TDS) and major ion (Mg2+, Na+, Ca2+, K+, SO42?, Cl? and NO3?) concentrations of groundwater gradually increase from the mountain front to the lower reaches of the Guazhou Basin. Geochemical evolution in groundwater was possibly due to a combination of mineral dissolution, mixing processes and evapotranspiration along groundwater flow paths. The isotopic and geochemical variations in melt water, springs, river water, YTG and GZG, together with the end‐member mixing analysis (EMMA) indicate that the springs in the mountain front mainly originate from precipitation, the infiltration of melt water and river in the upper reaches; the lateral groundwater from the mountain front and river water in the middle reaches are probably effective recharge sources for the YTG, while contribution of precipitation to YTG is extremely limited; the GZG is mainly recharged by lateral groundwater flow from the Yumen‐Tashi Basin and irrigation return flow. The general characteristics of groundwater in the Shule River Basin have been initially identified, and the results should facilitate integrated management of groundwater and surface water resources in the study area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Pore water has been extracted from Boom Clay by mechanical squeezing. Clay cores were obtained from various boreholes, all drilled at the SCK·CEN domain (Mol, Belgium).In contrast to pore water collected from piezometers, high sulphate concentrations are measured in the squeezed pore water. The lowest sulphate concentrations (<60 mg/l) were measured in pore waters squeezed immediately after drilling. Higher sulphate concentrations were often measured in the pore water when the clay cores were preserved for some time (generally <500 mg/l SO42−, but sometimes up to 20,000 mg/l SO42−). Nevertheless, a relation between preservation time and sulphate content could not be retrieved. However, major ion concentrations were obviously correlated with the sulphate content in the squeezed waters. The observed evolution in chemical composition were explained by water–rock interactions considering the pyrite oxidation and the subsequent ion exchange and mineral dissolution reactions.  相似文献   

7.
Waters were sampled from 17 boreholes at Haut Glacier d'Arolla during the 1993 and 1994 ablation seasons. Three types of concentrated subglacial water were identified, based on the relative proportions of Ca2+, HCO3? and SO42? to Si. Type A waters are the most solute rich and have the lowest relative proportion of Si. They are believed to form in hydrologically inefficient areas of a distributed drainage system. Most solute is obtained from coupled sulphide oxidation and carbonate dissolution (SO–CD). It is possible that there is a subglacial source of O2, perhaps from gas bubbles released during regelation, because the high SO42? levels found (up to 1200 µeq/L) are greater than could be achieved if sulphides are oxidized by oxygen in saturated water at 0 °C (c.414 µeq/L). A more likely alternative is that sulphide is oxidized by Fe3+ in anoxic environments. If this is the case, exchange reactions involving FeIII and FeII from silicates are possible. These have the potential to generate relatively high concentrations of HCO3? with respect to SO42?. Formation of secondary weathering products, such as clays, may explain the low Si concentrations of Type A waters. Type B waters were the most frequently sampled subglacial water. They are believed to be representative of waters flowing in more efficient parts of a distributed drainage system. Residence time and reaction kinetics help determine the solute composition of these waters. The initial water–rock reactions are carbonate and silicate hydrolysis, and there is exchange of divalent cations from solution for monovalent cations held on surface exchange sites. Hydrolysis is followed by SO–CD. The SO42? concentrations usually are <414 µeq/L, although some range up to 580 µeq/L, which suggests that elements of the distributed drainage system may become anoxic. Type C waters were the most dilute, yet they were very turbid. Their chemical composition is characterized by low SO42? : HCO3? ratios and high pH. Type C waters were usually artefacts of the borehole chemical weathering environment. True Type C waters are believed to flow through sulphide‐poor basal debris, particularly in the channel marginal zone. The composition of bulk runoff was most similar to diluted Type B waters at high discharge, and was similar to a mixture of Type B and C waters at lower discharge. These observations suggest that some supraglacial meltwaters input to the bed are stored temporarily in the channel marginal zone during rising discharge and are released during declining flow. Little of the subglacial chemical weathering we infer is associated with the sequestration of atmospheric CO2. The progression of reactions is from carbonate and silicate hydrolysis, through sulphide oxidation by first oxygen and then FeIII, which drives further carbonate and silicate weathering. A crude estimate of the ratio of carbonate to silicate weathering following hydrolysis is 4 : 1. We speculate that microbial oxidation of organic carbon also may occur. Both sulphide oxidation and microbial oxidation of organic carbon are likely to drive the bed towards suboxic conditions. Hence, we believe that subglacial chemical weathering does not sequester significant quantities of atmospheric CO2 and that one of the key controls on the rate and magnitude of solute acquisition is microbial activity, which catalyses the reduction of FeIII and the oxidation of FeS2. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The recent boom in shale gas development in the Marcellus Shale has increased interest in the methods to distinguish between naturally occurring methane in groundwater and stray methane associated with drilling and production operations. This study evaluates the relationship between natural methane occurrence and three principal environmental factors (groundwater redox state, water type, and topography) using two pre‐drill datasets of 132 samples from western Pennsylvania, Ohio, and West Virginia and 1417 samples from northeastern Pennsylvania. Higher natural methane concentrations in residential wells are strongly associated with reducing conditions characterized by low nitrate and low sulfate ([NO3?] < 0.5 mg/L; [SO42?] < 2.5 mg/L). However, no significant relationship exists between methane and iron [Fe(II)], which is traditionally considered an indicator of conditions that have progressed through iron reduction. As shown in previous studies, water type is significantly correlated with natural methane concentrations, where sodium (Na) ‐rich waters exhibit significantly higher (p<0.001) natural methane concentrations than calcium (Ca)‐rich waters. For water wells exhibiting Na‐rich waters and/or low nitrate and low sulfate conditions, valley locations are associated with higher methane concentrations than upland topography. Consequently, we identify three factors (“Low NO3? & SO42?” redox condition, Na‐rich water type, and valley location), which, in combination, offer strong predictive power regarding the natural occurrence of high methane concentrations. Samples exhibiting these three factors have a median methane concentration of 10,000 µg/L. These heuristic relationships may facilitate the design of pre‐drill monitoring programs and the subsequent evaluation of post‐drill monitoring results to help distinguish between naturally occurring methane and methane originating from anthropogenic sources or migration pathways.  相似文献   

9.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The conceptual hydrogeological model of the low to medium temperature Daying and Qicun geothermal fields has been proposed, based on hydrochemical characteristics and isotopic compositions. The two geothermal fields are located in the Xinzhou basin of Shanxi, China and exhibit similarities in their broad‐scale flow patterns. Geothermal water is derived from the regional groundwater flow system of the basin and is characterized by Cl·SO4‐Na type. Thermal water is hydrochemically distinct from cold groundwater having higher total dissolved solids (TDS) (>0·8 g/l) and Sr contents, but relatively low Ca, Mg and HCO3 contents. Most shallow groundwater belongs to local flow systems which are subject to evaporation and mixing with irrigation returns. The groundwater residence times estimated by tritium and 14C activities indicate that deep non‐thermal groundwater (130–160 m) in the Daying region range from modern (post‐1950s) in the piedmont area to more than 9·4 ka BP (Before Present) in the downriver area and imply that this water belong to an intermediate flow system. Thermal water in the two geothermal fields contains no detectable active 14C, indicating long residence times (>50 ka), consistent with this water being part of a large regional flow system. The mean recharge elevation estimated by using the obtained relationship Altitude (m) = ? 23·8 × δ2H (‰ ) ? 121·3, is 1980 and 1880 m for the Daying and Qicun geothermal fields, respectively. The annual infiltration rates in the Daying and Qicun geothermal fields can be estimated to be 9029 × 103 and 4107 × 103 m3/a, respectively. The variable 86Sr/87Sr values in the thermal and non‐thermal groundwater in the two fields reflect different lithologies encountered along the flow path(s) and possibly different extents of water‐rock interaction. Based on the analysis of groundwater flow systems in the two geothermal fields, hydrogeochemical inverse modelling was performed to indicate the possible water‐rock interaction processes that occur under different scenarios. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The spatial and temporal distribution of sulphate (SO4) concentrations in peat pore water and the outlet streams of two forested swamps was related to variations in the magnitude of upland runoff, wetland water levels and flow path. The swamps were located in headwater catchments with contrasting till depths typical of the southern Canadian Shield. Inputs of SO4 from shallow hillslope tills and streams showed little seasonal variation in either source or concentration in both swamps. Sulphate dynamics at the outlet stream reflected hydrological and biogeochemical processes within the valley wetlands, which in turn were partly controlled by catchment hydrogeology. During high runoff, maximum water table elevations and peak surface flow in the swamps resulted in upland inputs largely bypassing anoxic peat. Consequently, SO4 concentrations of 8–10 mg/l at the swamp outlets were similar to stream and groundwater inputs. During periods of low flow, concentrations of SO4 at the swamp outlets declined to less than 3 mg/l. At this time lower water table elevations resulted in increased interaction of input water with anoxic peats, and therefore, SO4 reduction. Contrasts in till depth and the nature of groundwater flow between catchments resulted in differences in SO4 dynamics between years and swamps. In dry summers the absence of groundwater inputs to the swamp in the catchment with thin till resulted in a large water table drawdown and re-oxidation of accumulated S, which contributed to maximum SO4 concentrations (up to 35 mg/l) during storm runoff. Continuous groundwater input to the swamp in the catchment with deeper till was critical to maintaining saturated surfaces and efficient SO4 retention during both dry and wet summers. A conceptual model of wetland SO4 retention and export, based on catchment hydrogeology, is developed to generalize the SO4 dynamics of valley bottom wetlands at the landscape scale. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
High groundwater salinity has become a major concern in the arid alluvial plain of the Dunhuang Basin in northwestern China because it poses a significant challenge to water resource management. Isotopic and geochemical analyses were conducted on 55 water samples from springs, boreholes and surface water to identify potential sources of groundwater salinity and analyse the processes that control increasing salinity. The total dissolved solid (TDS) content in the groundwater ranged from 400 to 41 000 mg/l, and high TDS values were commonly associated with shallow water tables and flow‐through and discharge zones in unconfined aquifers. Various groundwater contributions from rainwater, agricultural irrigation, river water infiltration and lateral inflows from mountains were identified by major ions and δD and δ18O. In general, HCO3? and SO42? were the dominant anions in groundwater with a salinity of <2500 mg/l, whereas Cl? and SO42? were the dominant anions in groundwater with a salinity of >2500 mg/l. The major ion concentrations indicated that mineral weathering, including carbonate and evaporite dissolution, primarily affected groundwater salinity in recharge areas. Evapotranspiration controlled the major ion concentration evolution and salinity distribution in the unconfined groundwaters in the flow‐through and discharge areas, although it had a limited effect on groundwater in the recharge areas and confined aquifers. Agricultural irrigation increased the water table and enhanced evapotranspiration in the oasis areas of the basin. TDS and Cl became more concentrated, but H and O isotopes were not enriched in the irrigation district, indicating that transpiration dominated the increasing salinity. For other places in the basin, as indicated by TDS, Cl, δD and δ18O characteristics, evaporation, transpiration and water–rock interactions dominated at different hydrogeological zones, depending on the plant coverage and hydrogeological conditions. Groundwater ages of 3H, and δD and δ18O compositions and distributions suggest that most of the groundwaters in Dunhuang Basin have a paleometeoric origin and experienced a long residence time. These results can contribute to groundwater management and future water allocation programmes in the Dunhuang Basin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

14.
Mass balance studies in forested catchments in the northeastern USA show that S losses via streamwater SO42? exceed measured atmospheric S inputs. Possible sources of the excess S loss include underestimated dry deposition, mineralization of organic S in soils, desorption of soil sulphate, oxidation of recently formed sulphides and mineral weathering. Evaluating the relative contribution of these sources and processes to SO42? export is important to our understanding of S cycling as well as to policy makers in their evaluation of the efficacy of S emission controls. In order to evaluate the potential for mineral weathering contributions to SO42? export, we measured concentration and isotopic composition (δ34S and δ18O) of SO42? in stream water, and concentration and δ34S values of four S fractions in bedrock and soil parent material in catchments of varying geological composition. Geological substrates with low S concentrations were represented by catchments underlain by quartzite and granite, whereas geological substrates with high S concentrations were represented by catchments underlain by sulphidic slate, schist and metavolcanic rocks. Catchments with S‐poor bedrock had stream‐water SO42? concentrations <100 µeq L?1 and isotopic values consistent with those of atmospheric SO42? that had been cycled through the organic soil pool. Catchments with S‐rich bedrock had stream‐water SO42? concentrations ranging from 56 to 229 µeq L?1. Isotopic values deviated from those of SO42? in atmospheric deposition, clearly indicating a mineral weathering source in some cases, whereas in others spatial variability of mineral δ34S values precluded the isotopic detection of a weathering contribution. These results, along with evidence suggesting formation of secondary sulphate minerals in bedrock weathering rinds, indicate that mineral weathering may be an important source of S in the surface waters of some forested catchments in the northeastern USA. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The use of reclaimed water and its impact on groundwater quality in the middle and southern parts of the Jordan Valley are investigated. The chemical analyses indicate that nitrate and bacteriological pollution is widespread, and thus, seriously affects groundwater use. During the study, 365 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. Three hydrochemical facies are identifed, i. e., (Ca–(Mg)–Na–HCO3), (Ca–Na–SO4–Cl) and (Ca–Na–Cl). The change of facies is accompanied by a gradual increase in the groundwater total dissolved solids (TDS), which is mainly controlled by evaporates and carbonates dissolution in the aquifer matrix. Water analyses indicate that the shallow aquifer in the study area is affected by non‐point pollution sources, primarily from natural (manure) and chemical nitrogen (N)‐fertilizers and treated wastewater used for agriculture. The concentration of nitrate in the groundwater ranges from 10 to 355 mg/L. Considerable seasonal fluctuations in groundwater quality are observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Zarqa River flow. The noticeable levels of total coliform and Escherichia coli in the northern part of the study area may be attributed to contamination from the urban areas, intensive livestock production, and illegal dumping of sewage. Heavy metal concentrations in all samples were found to be significantly lower than the permissible limits for drinking water standards.  相似文献   

16.
A comprehensive study of a sandy aquifer of deltaic origin in southern Poland included water chemistry, isotopes, dissolved trace gases and transport modelling. Tritium, sulphur hexafluoride (SF6) and freons (F‐11, F‐12 and F‐113) showed the presence of modern waters in the recharge areas and shallow confined parts of the aquifer. The presence of older Holocene waters farther from the recharge areas was indicated by lack of 3H, SF6 contents ≤0·02 fmol l−1 and relatively low 14C values. The discharge from the system is by upward seepage in the valley of a major river. Pre‐Holocene waters of a cooler climate, identified on the basis of δ18O, δ2H, 14C, Ne and Ar data, were found in some distant wells. Concentrations of N2, Ne and Ar determined by gas chromatography were used for calculating the noble gas temperatures, air excess needed for correction of SF6, and nitrogen content released by denitrification process. The time series of 3H content available for some wells supplied quantitative information on age distributions and the total mean ages of flow through the unsaturated and saturated zones. The derived 3H age distributions turned out to be very wide, with mean values in the range of about 30 to 160 years. For each well with determined 3H age, the SF6 data showed either a lower age range or the possibility of a lower age as expected due to shorter travel times of SF6 through the unsaturated zone, which most probably also resulted in different types of age distributions of these tracers. Freons appeared to be of little use for individual age determinations. A quantitative estimation of two‐component mixing from SF63H relations is not possible unless the travel time of 3H through the unsaturated zone is comparable to that of SF6. The ratio of integrals of the response function over the age range with tracer and the whole response function yields the ratio of water with tracer to total flow of water. That ratio is a tracer‐dependent function of time. Transport modelling of SF6 tracer done with MT3D code yielded initially large discrepancies between calculated and measured tracer concentrations. Some discrepancies remained even after calibration of the transport model with SF6. Simulation of tritium contents with a calibrated transport model yielded reasonable agreement with measured contents in some wells and indicated a need for further investigations, particularly in the eastern part of the aquifer. The existence of distinct hydrochemical zones is consistent with the tracer data; young waters with measurable 3H and SF6 contents are aerobic and of HCO3 Ca or HCO3 SO4 Ca types. Slightly elevated Na and Cl contents, as well as the highest concentrations of SO4 and NO3 within this zone are due to anthropogenic influences. Anaerobic conditions prevail in the far field, under the confining cover, where pre‐bomb era Holocene waters dominate. In that zone, dissolved oxygen, NO3 and U contents are reduced, and Fe, Mn and NH4 contents increase. In the third zone, early Holocene and glacial waters occur. They are of HCO3 Ca Na or HCO3 Na types, with TDS values higher than 1 g l−1 and Na content higher than 200 mg l−1, due to either small admixtures of ascending or diffusing older water or freshening of marine sediments, a process that is probably occurring till the present time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Permian coal measure sandstone fissure water (referred to as “coal measure water,” that is, water in coal measures) is one of the important water sources for industrial and agricultural activities in mining areas. However, the regional high-pressure grouting, one of the most widely used floor control methods, may affect the coal measure water which is connected with limestone aquifer. This study used Taoyuan mine, a typical coal mine in Huaibei coalfield, as the research area to study the influencing mechanism of a grouting treatment on the hydrogeochemical evolution of coal measure water. The hydrogeochemical characteristics and water-rock interaction mechanism of the coal measure water before and during the treatment were evaluated using a Piper trigram, ion combination ratio, and hydrogen-oxygen stable isotope. The anions and cations in the coal measure water before and during the treatment had the same trends at SO42− > HCO3 > Cl and Na+ > Ca2+ > Mg2+, respectively. Hydrochemical types of coal measure water before treatment were mainly SO4·Cl-Ca·Mg, SO4·Cl-Na, and HCO3-Na, and during treatment they were mainly SO4·Cl-Na and HCO3-Na. The formation of chemical components of coal measure water before treatment was mainly caused by carbonate dissolution, sulfate dissolution, and pyrite oxidation. During the treatment, sulfate dissolution and pyrite oxidation were the main geochemical processes, and ion exchange was enhanced. Atmospheric precipitation was the source of all water samples, and all showed an obvious 18O drift.  相似文献   

18.
In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984–2001 and 1992–2001) and surface water chemistry (1992–2001) were determined in two of the most acid‐sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42?), nitrate (NO3?), and base cation (CB) concentrations and increasing pH during 1984–2001, but few significant trends during 1992–2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42? concentrations at all sites, and decreasing trends in NO3?, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid‐neutralizing capacity (ANC) increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42? trends, but it caused several significant non‐flow‐corrected trends in NO3? and ANC to become non‐significant, suggesting that trend results for flow‐sensitive constituents are affected by flow‐related climate variation. SO42? concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation–surface water comparisons, reflecting a strong link between S emissions, precipitation SO42? concentrations, and the processes that affect S cycling within these regions. NO3? and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation–surface water comparisons, indicating that variation in local‐scale processes driven by factors such as climate are affecting trends in acid–base chemistry in these two regions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

20.
Groundwater is an important source of freshwater for domestic, agricultural and industrial uses in Iran. Groundwater quality assessment and environmental evaluation are considered as critical issues in recent years. Intensive human activities have resulted in significant changes in environment leading to serious groundwater contamination. This research proposes a two-part systematic approach to tackle heavy metals contamination problem in Rayen Basin (southeast Iran). The first part consists of determining geochemical characteristics and evaluating groundwater quality through application of water quality index and heavy metal pollution indices (i.e. HPI and MI). The second part includes ranking sampling stations based on heavy metals concentration in groundwater using linear assignment method. Six types of water could be identified according to the dominant cations and anions in samples: Ca–HCO3, Ca–SO4, Na–Cl, Na–HCO3, Na–SO4 and mixed water type. Calculation of indices revealed that natural and anthropogenic activities are playing a vital role in degrading groundwater quality in the study area. The proposed methodology can help in groundwater resource management and preventative activities by identifying risk factors and recognizing their pollution level. The results of this research provide useful and effective information for water pollution control and management and can be used in environmental studies in order to protect groundwater resources in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号