首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various researchers have studied the spatial pattern of soil surface components such as vegetation, rock fragments, bare soil, litter and surface crusts, as a key factor of hydrological behaviour in Mediterranean settings with heterogeneous patches of vegetation cover and strong human impact. The studies indicate that there is a mosaic of patches that generate run-off or infiltrate overland flow, distributed in various ways along hillslopes. Few of these studies, however, have looked at areas underlain by metamorphic rocks such as phyllites or schists. This study analysed the temporal and spatial variability of the effects of soil surface components on hydrological processes in a small dry Mediterranean catchment underlain by metamorphic rocks. A systematic sampling of multiple sites throughout a hydrological year was carried out.We related the hydrological behaviour of soil surface components to 1) their position along the hillslope, 2) the distance of existing vegetation tussocks from the line of run-off, 3) rainfall intensity and 4) the main physical/chemical soil properties affecting infiltration processes. Statistical analysis was used to check the validity of the relationships. The results show that soil surface components have highly variable effects, in both space and time, on soil hydrological behaviour. These effects particularly depend on the location along the line of maximum slope and the intensity of preceding rainfall, whose interaction defines soil hydrological status. These results are similar to those for other Mediterranean settings with different lithology, in that the succession of contributing patches are hydrologically interconnected along a hillslope. The variables used and the grouping of explanatory variables through principal component analyses were found to be suitable for discussing the spatial distribution of soil surface components in the hydrologically dynamic environment of the study area.  相似文献   

2.
Patterns of rock fragment cover generated by tillage erosion   总被引:6,自引:0,他引:6  
Intensively cultivated areas in the upper part of the Guadalentin catchment (southeast Spain) show a systematic spatial pattern of surface rock fragment cover (Rc). The objective of this paper is to quantify and to explain this spatial rock fragment cover pattern. Therefore, a map of an intensively cultivated area of 5 km2 was digitised, and for each pixel total topographic curvature was calculated. Next, rock fragment cover was determined photographically at 35 sites with a range of total slope curvatures. A linear relation between total curvature and rock fragment cover was found, except for narrow concavities. It was hypothesised that this pattern can be explained by a significant net downslope movement of rock fragments and fine earth by tillage. The displacement distances of rock fragments by tillage with a duckfoot chisel were measured by monitoring the displacement of tracers (painted rock fragments and aluminium cubes) on 5 sites having different slopes. The rare of tillage erosion for one tillage pass with a duckfoot chisel, expressed by the diffusion constant (k), equals 282 kg/m for up and downslope tillage and only 139 kg/m for contour tillage. Nomograms indicate that mean denudation rates in almond groves due to tillage erosion (3 to 5 tillage passes per year) can easily amount to 1.5–2.6 mm/year for contour tillage and up to 3.6–5.9 mm/year for up- and downslope tillage for a field, 50 m long and having a slope of 20%. These figures are at least one order of magnitude larger than reported denudation rates caused by water erosion in similar environments. Hence tillage erosion contributes significantly to land degradation. The downslope soil flux induced by tillage not only causes considerable denudation on topographic convexities (hill tops and spurs) and upper field boundaries but also an important sediment accumulation in topographic concavities (hollows and valley bottoms) and at lower field boundaries. Kinetic sieving (i.e. the upward migration of rock fragments) by the tines of the duckfoot chisel also concentrates the largest rock fragments in the topsoil in such a way that a rock fragment mulch develops in narrow valleys and at the foot of the slopes. These results clearly indicate that tillage erosion is the main process responsible for the observed rock fragment cover pattern in the study area. Since the study area is representative for many parts of southern Spain where almond groves have expanded since 1970, the results have a wider application. They show to what extent intensive tillage of steep slopes has contributed to the increase in soil degradation, to changes in hillslope morphology (i.e. strong denudation of convexities, development of lynchets and rapid infilling of narrow valley bottoms) and to the development of rock fragment cover patterns which control the spatial variability of the hydrological and water erosion response within such landscapes.  相似文献   

3.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   

4.
A model for the prediction of topographic and climatic control on shallow landsliding in mountainous terrain is enhanced to analyse the impact of upslope rocky outcrops on downslope shallow landsliding. The model uses a ‘generalised quasi-dynamic wetness index’ to describe runoff propagation on bare rock surfaces connected to downslope soil-mantled topographic elements. This approach yields a simple enhanced model capable of describing the influence of upslope bedrock outcrops on the pattern of downslope soil saturation. The model is applied in both diagnostic and predictive modes to a small catchment in the eastern Italian Alps for which a detailed inventory of shallow landslides in areas dominated by rocky outcrops is available. In the diagnostic mode, the model is used with satisfactory results to reproduce the pattern of instability generated by an intense short-duration storm occurred on 14 September 1994, which triggered a large percentage of the surveyed landslides. In the predictive mode, the model is used for hazard assessment, and the return time of the critical rainfall needed to cause instability for each topographic element is determined. Modelling results obtained in the predictive mode are evaluated against all the surveyed landslides. It is revealed that the generalised quasi-dynamic model offers considerable improvement over the non-generalised quasi-dynamic model and the steady-state model in predicting existing landslides as represented in the considered landslide inventory.  相似文献   

5.
地表径流对荒漠灌丛生境土壤水分空间特征的影响   总被引:3,自引:2,他引:1  
李小军 《中国沙漠》2012,32(6):1576-1582
土壤水分是干旱区多尺度生态水文过程的关键影响因素和驱动因子,其时空格局是生态、水文、气象、地形等自然过程研究的重要参数。笔者研究了降水径流事件后3种不同灌丛个体尺度土壤水分空间异质性特征,结果表明,珍珠灌丛个体尺度土壤水分空间分布特征表现为灌丛边缘>灌丛内部>灌丛间裸地,驼绒藜灌丛表现为灌丛内部>灌丛边缘>灌丛间裸地,而狭叶锦鸡儿灌丛不同微生境土壤水分差异不显著。珍珠和驼绒藜灌丛同一微生境土壤水分存在坡位梯度,珍珠灌丛3个微生境土壤水分均表现为上坡位大于下坡位,而驼绒藜灌丛边缘表现为上坡位小于下坡位,其他两个微生境无明显规律;狭叶锦鸡儿灌丛土壤水分无明显的坡位梯度。3种灌丛不同微生境土壤含水量随土层深度增加的变化不明显。这说明在降水径流事件中,不同斑块的反应差异引起了地表径流的形成以及随之发生的资源再分配,从而导致了景观内土壤水分的空间异质性。  相似文献   

6.
Nikolaus J. Kuhn  Aaron Yair   《Geomorphology》2004,57(3-4):183-200
High rill density may be regarded as indicative of frequent and integrated runoff along a drainage network. However, field observations of soil development and rill geometry in small, first-order catchments (0.1 to 1 ha) of the Zin Valley Badlands, northern Negev, Israel, suggest a pattern of partial area contribution and frequent flow discontinuities along hillslopes and channels. Changing soil properties, associated with an increase of slope angle and slope length, appear to be responsible for high infiltration on the slopes, leading to nonuniform runoff generation within small drainage basins. Runoff observation, sprinkling tests, and soil analysis along ridges and sideslopes were carried out to test this hypothesis. The results confirmed that infiltration capacity on the sideslopes is significantly higher than on the ridges. Under current rainfall conditions, only extreme rainfall intensities are sufficient to generate runoff along entire slopes. The discontinuous nature of most runoff events causes erosion on ridges and deposition on slopes, which enhances soil development on the valley sideslopes, creating a positive feedback on infiltration rate and depth. This demonstrates that the links between within-storm rainfall conditions and spatial distribution of soil characteristics have to be incorporated into our understanding of landscape development in badlands.  相似文献   

7.
中国东部亚热带丘陵山区土地退化坡面分带性的成因   总被引:8,自引:2,他引:6  
卢金发 《山地学报》1999,17(3):218-223
中国东部地区流水侵蚀所引起的土地退化具有明显的坡面分带性。以安徽绩溪、浙江兰溪和广东五华为典型区,从坡地地貌及其所引起破面侵蚀分带性入手,通过坡面不同部位地面物质及其理化性质、养分和水分状况以及植被、侵蚀地貌形态的分析,探讨土地退化坡面分带性的成因。  相似文献   

8.
Soils from two catenas on north-and south-facing slopes of a kame were analyzed to determine the effect of lithology, topography, and microclimate on profile development. In loess on the north-facing slope, where microclimate favored CaCO3 dissolution and clay translocation, pedogenesis was rapid and an A-E-Bt-C profile developed. In contrast, an A-Bt-C profile developed on the south-facing slope. In gravel where limestone/dolostone dissolution was slow, A-C profiles were found and CaCO3 was depleted to a ≤ 25-cm depth, 20± cm less than reported for similar Michigan soils. Slopewash and runoff are inferred to have caused silt accumulations and greater infiltration at the base of ≥ 20° slopes, resulting in a thicker solum in foot-and toe-slope positions, whereas on slopes of ≤ 7° infiltration and interflow are the dominant processes, resulting in a thicker solum on the transportational midslope. The differences in soil profile development are attributed to sediment facies changes at 25- to 50-cm depth and resulting groundwater movement. [Key words: soil development, soil spatial variability, kame slope catena, Wisconsin.]  相似文献   

9.
峰丛洼地石漠化景观演化与土地利用模式   总被引:2,自引:0,他引:2  
但文红  张聪  宋江  王丽 《地理研究》2009,28(6):1615-1624
峰丛洼地石漠化景观格局是土壤分布空间格局的制约下,岩溶生态系统对植被强烈依附性条下,由不同类型人类活动决定的。农耕、放牧和砍伐是最主要的破坏峰丛植被的人类活动;缓坡耕地形成轻度石漠化景观;陡坡地形成中度石漠化景观,因坡面土壤流失,演化为更高等级石漠化景观;峰丛陡坡放牧和砍伐都可能直接形成峰丛上部大面积中-强度石漠化景观,出现峰丛坡面石漠化景观分异,产生不同的土地利用模式。  相似文献   

10.
Runoff and erosion processes are often non-linear and scale dependent, which complicate runoff and erosion modelling at the catchment scale. One of the reasons for scale dependency is the influence of sinks, i.e. areas of infiltration and sedimentation, which lower hydrological connectivity and decrease the area-specific runoff and sediment yield. The objective of our study was to model runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity. We simulated runoff and sediment dynamics at the catchment scale with the LAPSUS model and included plot and hillslope scale features that influenced hydrological connectivity. The semi-arid Carcavo catchment in Southeast Spain was selected as the study area, where vegetation patches and agricultural terraces are the relevant sinks at the plot and hillslope scales, respectively. We elaborated the infiltration module to integrate these runoff sinks, by adapting the parameters runoff threshold and runoff coefficient, which were derived from a rainfall simulation database. The results showed that the spatial distribution of vegetation patches and agricultural terraces largely determined hydrological connectivity at the catchment scale. Runoff and sediment yield for the scenario without agricultural terraces were, respectively, a factor four and nine higher compared to the current situation. Distributed hydrological and erosion models should therefore take account of relevant sinks at finer scales in order to correctly simulate runoff and erosion-sedimentation patterns.  相似文献   

11.
Matteo Tosi   《Geomorphology》2007,87(4):268-283
The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25–40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick. S. junceum (L.) colonizes not only fan/cone/taluses but also headwalls and cliffs and, for a 0.6 m thick soil, it stabilises these areas up to 45°. The effectiveness of this reinforcement, however, depends strongly on the frequency of soil and seasonal grass vegetation removal due to shallow landsliding before the entrance of the shrub species.  相似文献   

12.
为进一步研究不同草本植物和边坡坡面形态对坡面产流产沙的影响,以西宁盆地毛鸡湾流域长岭绿化区作为试验区,设计了直形和阶梯形2种坡形,选取3种优势草本老芒麦(Elymus sibiricus Linn.)、垂穗披碱草(Ely-mus nutans Griseb.)和细茎冰草(Agropyron trachycaulum L...  相似文献   

13.
Hypsometric curves and integrals are effective tools for rapid quantitative assessments of topography. High‐resolution digital terrain models derived from airborne LiDAR data have been analysed to study the hypsometry of small headwater rock basins (drainage areas up to 0.13 km2) in three study areas in the Dolomites (Eastern Alps) that have similar lithologies and climatic conditions. Hypsometric curves in the studied rocky headwaters display a variety of shapes and present remarkable differences between neighbouring basins. Hypsometric integrals show generally high values in the three study areas (>0.42, mean values between 0.51 and 0.65). The extent of the scree slopes located at the foot of rock basins in the three study areas is larger in the area with lower hypsometric integrals and indicates consistency between the development of basin erosion, which is shown by the hypsometric integral, and debris yield, represented by the extent of scree slope. No clear relations were observed between the hypsometric integrals and basin area and shape. When extending the analysis to larger basins, which encompass rocky headwaters and downslope soil‐mantled slopes, a negative correlation is found between the hypsometric integral and catchment area, suggesting that the scale independency of the hypsometric integral occurs essentially in headwater rock basins. Geomorphometric indices (residual relief and surface roughness) have contributed to interpreting the variability of surface morphology, which is related to the geo‐structural complexity of the catchments.  相似文献   

14.
Glaciers in the western USA contribute summer meltwater to regional hydrological systems. In the San Juan Mountains of Colorado, where glaciers do not exist, rock glaciers serve that function during the summer runoff period. Most rock glaciers in Colorado are located on northern slopes in mountainous areas; however, some rock glaciers in southwest Colorado have different aspects. In this study, we asked how slope aspect and rising air temperatures influence the hydrological processes of streams sourced from rock glaciers in the San Juan Mountains. We focused on three adjacent basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which share a common peak, Gilpin Peak. Using HOBO® U20-001–04 water-level loggers, streamflow data were collected in each of these basins, below each rock glacier. Air temperature significantly influenced stream discharge below the rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increases at a greater rate. The results also suggest that the aspect of rock glacier basins influences stream discharge, but that temperature and precipitation are likely larger components of melt regimes.  相似文献   

15.
喀斯特露石常常占据一定比例的地表面积,且具有许多已知或未知的水文—生态功能,对于喀斯特地区的植被恢复和环境改善发挥着重要的作用。本实验运用样线法和拍照法识别喀斯特断陷盆地不同位置(盆缘和盆地边坡)露石的数量特征和外部形态特征,同时比较了两种方法测量样地岩石裸露率的精准度。结果发现:盆地边坡与盆缘的露石数量和外部特征存在显著差异,盆缘露石分布密度(0.54个·m-2)>盆地边坡(0.39个·m-2);但盆地边坡露石的长宽比大于盆缘,单体占地面积为盆缘露石的两倍,接近40%的盆地边坡露石与山体等高线平行。样线法和拍照法测量样地岩石裸露率的结果存有差异,但并不显著,且这种差异呈现出随着岩石裸露率的增加而逐渐增加的趋势,拍照测量结果具有较小的变异系数。这些结果说明了研究区露石具有较强的空间异质性,对解释地表水土运移规律和植物分布提供重要参考。拍照法能准确地测量岩石裸露率,并提供露石外部形态特征的精准数据,可以作为喀斯特样地露石调查的新方法加以推广。  相似文献   

16.
多尺度土地利用与土壤侵蚀   总被引:20,自引:5,他引:15  
土地利用能够通过改变一系列的自然现象和生态过程影响土壤侵蚀,尺度不同,土地利用与土壤侵蚀的作用机制也会发生变化。本文针对坡面尺度、小流域/流域尺度和区域尺度,综述了不同尺度上土地利用对土壤侵蚀的影响研究。其中,在坡面尺度上,土地利用与土壤侵蚀的研究主要包括土地利用方式和土地管理措施对土壤侵蚀的影响,相应尺度上的模型有USLE/RUSLE、WEPP等;在小流域/流域尺度上,土地利用与土壤侵蚀的研究主要涉及土地利用结构和土地利用格局对土壤侵蚀的影响,相关的模型有LISEM、AGNPS、EUROSEM和SEDEM等;在区域尺度上土壤侵蚀评价研究主要是通过尺度上推和宏观因子评价的方法进行。多尺度土地利用与土壤侵蚀研究作为自然地理学研究中的热点问题,在进一步的研究中需要关注多尺度综合与尺度转换、土地利用政策效应、土地利用格局与土壤流失过程等方面的研究内容。  相似文献   

17.
Liu  Muxing  Wang  Qiuyue  Guo  Li  Yi  Jun  Lin  Henry  Zhu  Qing  Fan  Bihang  Zhang  Hailin 《地理学报(英文版)》2020,30(6):949-968
Rainfall provides essential water resource for vegetation growth and acts as driving force for hydrologic process, bedrock weathering and nutrient cycle in the steep hilly catchment. But the effects of rainfall features, vegetation types, topography, and also their interactions on soil water movement and soil moisture dynamics are inadequately quantified. During the coupled wet and dry periods of the year 2018 to 2019, time-series soil moisture was monitored with 5-min interval resolution in a hilly catchment of the Three Gorges Reservoir Area in China. Three hillslopes covered with evergreen forest(EG), secondary deciduous forest mixed with shrubs(SDFS) and deforested pasture(DP) were selected, and two monitoring sites with five detected depths were established at upslope and downslope position, respectively. Several parameters expressing soil moisture response to rainfall event were evaluated, including wetting depth, cumulative rainfall amount and lag time before initial response, maximum increase of soil water storage, and transform ratio of rainwater to soil water. The results indicated that rainfall amount is the dominant rainfall variable controlling soil moisture response to rainfall event. No soil moisture response occurred when rainfall amounts was 8 mm, and all the deepest monitoring sensors detected soil moisture increase when total rainfall amounts was 30 mm. In the wet period, the cumulative rainfall amount to trigger surface soil moisture response in EG-up site was significantly higher than in other five sites. However, no significant difference in cumulative rainfall amount to trigger soil moisture response was observed among all study sites in dry period. Vegetation canopy interception reduced the transform ratio of rainwater to soil water, with a higher reduction in vegetation growth period than in other period. Also, interception of vegetation canopy resulted in a largeraccumulated rainfall amount and a longer lag time for initiating soil moisture response to rainfall. Generally, average cumulative rainfall amount for initiating soil moisture response during dry period of all sites(3.5–5.6 mm) were less than during wet period(5.7–19.7 mm). Forests captured more infiltration water compared with deforested pasture, showing the larger increments of both soil water storage for the whole soil profile and volumetric soil water content at 10 cm depth on two forest slopes. Topography dominated soil subsurface flow, proven by the evidences that less rainfall amount and less time was needed to trigger soil moisture response and also larger accumulated soil water storage increment in downslope site than in corresponding upslope site during heavy rainfall events.  相似文献   

18.
通过模拟降雨试验,研究粤北地区不同石漠化程度的灌丛坡地地表径流水中钙离子含量的变化。结果表明,在不同雨强下,不同石漠化灌丛坡地地表径流量、地表径流水钙离子浓度和地表径流水钙离子总量随石漠化程度的加重呈逐渐上升后又降低的倒“U”型趋势;在同一雨强下,潜在、轻度和极重度石漠化坡地径流水钙离子流失量远低于中度和重度石漠化坡地;地表水中的钙离子流失总量和地表径流量、土层厚度、岩石裸露率均有较高的相关性,其中与地表径流量达到显著性相关。  相似文献   

19.
On upland Triassic sandstone slopes of the western Blue Mountains, nonswamp, sclerophyllous heath (shrub-dominated vegetation) on shallow soils is commonly found downslope and adjacent to sclerophyllous forest on deeper soils. Some consider heath—and thus shallow soils—as favouring west-facing slopes, which are expected to experience drier microclimates due to insolation, strong and desiccating winds, and severe summer fires. However, our analysis of extensive areas with heath on shallow soils, based on vegetation and topographic maps, and fieldwork of uplands with various degrees of dissection, suggests that aspect is a poor predictor of shallow soils. Rather, shallow soils and heath are found on short slopes and the lower segments of longer slopes with the latter significantly steeper than forested segments.The shallow–deep soil boundary, marked by contrasting modern vegetation structures, does not signify a catchment area threshold, and correspondingly, the vegetation patterns are not in balance with distributary catchment processes, as short slopes are mantled exclusively by shallow soils. Instead, the soil depth boundary represents the propagation of base-level lowering signals, which takes place not only by the headward retreat of knickpoints but also via increased lowering of slope segments adjacent to drainage lines. This leads to steep slopes immediately adjacent to canyons, narrow gorges, and small steep valleys, that are mantled by shallow, discontinuous soils undergoing rapid erosion. These steep slopes persist in the landscape for ≥ 10 My after upland stream rejuvenation until incision of more weatherable Permian sediments, underlying the Triassic cliff-forming sandstones, triggers rapid lateral expansion of gorges. Once shallowly mantled and steeper slopes adjacent to streams are consumed by gorge widening, slopes adjacent to wide gorge clifflines reflect former upland drainage patterns rather than the redirected flow to rapidly widening gorges. Hence, modern vegetation patterns reflect a significant phase of landform development, perhaps combined with enhanced erosion during the Last Glacial Period that is compounded by a humped soil production function on bedrock.  相似文献   

20.
《自然地理学》2013,34(6):561-573
The semi-arid forest-steppe ecotone in China is characterized by a patchy pattern of forest and steppe, with forest patches restricted to shady slopes. To address the effect of topography on forest distribution through regulation of available water, we calculated evaporation as a function of slope aspect and inclination. Field vegetation records from randomly selected sites with minimum slope inclination were used to test the simulated forest distribution. Seasonal and diurnal changes of surface soil temperature and moisture of shady and sunny slopes were recorded. Soil water content was measured during two growing seasons on both sunny and shady slopes with the same forest type at three sites located along the mean annual precipitation (MAP) gradient. Evaporation decreases with slope inclination on shady slopes, but increases with inclination on sunny slopes. The shady slope received 35% of the annual direct solar radiation received by the sunny slope when the slope inclination was 25°, and the contrast in annual direct solar radiation between the shady and sunny slopes further widens as slope inclination increases. Steeper shady slopes can support forests in dryer climates, with log-linear regression revealing a minimum slope inclination for forest distribution along the MAP gradient. The simulated minimum slope inclination for forest growth was larger than the observed minimum inclination, and the difference was greater in wetter conditions. A larger forest area fraction was considered to lead to a reduction in soil temperature and evaporation, as verified by soil temperature and moisture records and soil water content measurements. The slope-specific forest distribution in the semi-arid region of China can be explained by a topography-controlled soil water supply. Lower evaporation, resulting from lower direct solar radiation on shady slopes, allows shady slopes to retain a water supply sufficient for sustaining forests, and the existence of forests on shady slopes further reduces evaporation. Different tree species coexist at the xeric timberline due to regulation by slope inclination and aspect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号