首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
利用SODA(Simple Ocean Data Assimilation)再分析资料,分析了南海北部深水海域温度及盐度的季节和年际变化特征,讨论了季节及年际变化时间尺度上黑潮通过吕宋海峡对南海北部温、盐场的影响.资料分析表明:南海北部深水海域温、盐场存在明显的季节及年际变化特征.在气候平均态下,吕宋海峡处黑潮对南海北部温、盐场的影响主要存在于119°E以东;黑潮对南海的入侵程度在冬季最大,可影响到118°E附近;在秋季最小.吕宋海峡以西的温度水平梯度在秋季最弱,而盐度水平梯度则在夏季最弱.在吕宋海峡处黑潮形变的南侧,温、盐场年际变化信号最强.通过EOF(Empirical Othorgnal Function)分析,发现南海北部深水海域盐度和温度场第一模态的最大变率均分布在吕宋海峡处黑潮形变的南部,且均具有2~5 a的年际变化周期.另外,在年际变化时间尺度上,南海北部深水海域盐度场受黑潮形变的影响较大,在黑潮流量大的年份吕宋海峡处盐度值较低,在黑潮流量小的年份吕宋海峡处盐度值较高,而温度场则和Nino3.4指数呈明显的负相关变化.  相似文献   

2.
本文利用涡分辨率的HYCOM模式,以NCEP月平均再分析资料(1979—1993)为驱动场,并采用单向数值嵌套的方式对黑潮流域进行数值模拟,成功模拟了黑潮流域的高分辨率流场特征。模拟结果显示:黑潮路径符合前人对黑潮的认识;在地形和流量的共同作用下,黑潮对吕宋海峡的入侵呈现多平衡态的特征;日本以南的黑潮路径发生多种时间尺度的摆动(从季节内到年际)。黑潮在PN断面上流速跟同期观测十分相符,流轴集中在陆架破折处,季节变化较弱。台湾岛以东黑潮,东海黑潮以及吐噶喇海峡黑潮的流量符合对应时期观测,并且各自呈现出不同的变化特点。  相似文献   

3.
吕宋海峡水交换季节和年际变化特征的数值模拟研究   总被引:1,自引:0,他引:1  
利用ROMS(Regional Ocean Modeling System)建立了一套覆盖西北太平洋的涡尺度分辨率环流模型,并对吕宋海峡附近的环流进行了模拟研究。结果表明,吕宋海峡120.75°E断面净流量季节变化显著,全年均为西向输运,6月份达到最小,为0.40×106 m3/s,然后逐渐增大,在12月份达到最大,为6.14×106 m3/s,全年平均流量为3.04×106 m3/s。在500 m以浅,秋、冬季都有明显的黑潮流套存在,并伴有黑潮分支入侵南海,而春、夏季黑潮南海分支减弱或消失,黑潮入侵不明显。在500 m以深,冬、春季,吕宋海峡以东有非常明显的南向流存在,流速约10 cm/s,而到了夏、秋季该南向流出现明显的减弱,黑潮与南海的水交换主要通过吕宋海峡以北的吕宋海沟进行。在垂向结构上,120.75°E断面浅层呈多流核结构,并且流核的位置和强弱受黑潮的季节性变化影响显著,深层流的季节变化不大。在年际尺度方面,吕宋海峡年际体积输运量异常与Niño3.4滞后6个月相关系数达到41.6%,吕宋海峡水交换与ENSO现象有较为显著的正相关关系,并存在2~3 a和准8 a周期的年际变化。  相似文献   

4.
本文采用美国伍兹霍尔研究所研发的海洋-大气-波浪-泥沙输运耦合模式COAWST(Coupled Dcean-Atmosphere-Wave-Sediment Transport)对南海及邻近海域进行了9 km分辨率的数值模拟研究。结果表明,南海贯穿流的季节变化再现了冬强夏弱的特征,在南海内部冬季呈现气旋环流结构,夏季呈现反气旋环流结构,尤其在冬季其流轴结构更为清晰和稳定,海水从吕宋海峡进入南海,从民都洛海峡、卡里马塔海峡、台湾海峡和巴拉巴克海峡流出,吕宋海峡断面流量与其他4个海峡流量合计在数量级上相当,保持南海海水总量不变。吕宋海峡、卡里马塔海峡、民都洛海峡的流量呈现明显相关性,吕宋海峡流量增大时,民都洛海峡和卡里马塔海峡的流量也相应增大,相关系数分别达到0.78和0.9。通过更适于分析中短期变化的简化绕岛环流理论,定量计算2019年吕宋海峡、黑潮和棉兰老流流量与北赤道流分叉点位置的关系,发现夏季北赤道流分叉点NECBL(North Equatorial Current Bifurcation Latitude)偏南,在13.6°N附近;冬季NECBL偏北,在15.6°N左右,同期黑潮流量减少,棉兰老流流量增加,作为南海贯穿流入流的吕宋海峡流量可达13.4 Sv。吕宋海峡输运补偿了北赤道流到达菲律宾海岸后的北向分支的流量,与棉兰老流的流量呈正相关,相关系数达到0.5361。  相似文献   

5.
利用区域海洋数值模式(ROMS)建立了南中国海三维海洋环流数值模型。基于2006—2018年逐日平均的数值模拟结果,分析了吕宋海峡断面(120.75°E)的纬向流及通过断面的水体通量的时空变化规律,并采用集合经验模态分解法(EEMD)分别探讨了整层和表、中、底层水体通量的时间变化特征。结果表明:断面处纬向流呈现明显的多核结构,流态分布随季节变化较小,而流速变化受季节影响较大;断面水体通量存在明显的季节、月际变化;其垂向变化在年平均、春季、秋季和冬季时都呈现"三明治"结构,分界点分别在540 m和1 720 m左右,受黑潮分支强度的影响,在夏半年(5—9月)呈现"四层"结构,上表层厚度为45~80 m且存在月变化,5月为发展期,6—8月为成熟期,9月为消亡期;表层水体通量的时间变化对整层的变化影响最大,黑潮入侵的强度是导致整层及表层水体通量变化的主要因素。  相似文献   

6.
本文利用1993-2015年AVISO卫星高度计融合数据,统计分析了从黑潮延伸体流轴脱落涡旋的空间分布特征、运动属性以及季节、年际和类年代际变化。研究结果表明,23年间共追踪到242个气旋涡,276个反气旋涡,脱落的涡旋主要分布在沙茨基海隆以西区域。从脱落涡旋的源地空间分布来看,气旋涡的形成区域有两个高值区,一个位于黑潮延伸体流轴稳定弯曲处,即144°~146°E之间的上游区域;另一个位于沙茨基海隆西侧156°E处。而反气旋涡的形成区域也有两个高值区,一个位于沙茨基海隆以西的下游区域,另一个位于148°E处。这些在上游和下游脱落的涡旋大多向西移动,其中有88%的涡旋再次被流轴吸收。脱落涡旋的数量显示出了明显的年际和类年代际变化。在流轴的上下游区域,类年代际和年际变化分别占主导地位。并且在上游区域,脱落涡旋的类年代际变化与黑潮延伸体的强度呈负相关。在季节变化上,夏季脱落形成的涡旋最多,冬季最少。  相似文献   

7.
吕宋海峡海洋环流的基本特征   总被引:7,自引:2,他引:5  
根据对高分辨率的并行海洋气候模式输出的较长时间序列的海面高度(SSH)场的分析,推断在吕宋海峡附近海区常年存在吕宋海峡黑潮流套,该流套出现于吕宋海峡的中部和北部,表现为一个舌状的SSH的高值中心自海峡东部的太平洋向西扩展到南海北部,大致到达110°E的位置,但其位置、形状、强度等表现季节变化,年际变化和季节内时间尺度变化的特征。在吕宋海峡东侧的大洋上,经常出现位置和范围时有变化的反气旋涡,与之对应,在SSH的月平均经向和纬向剖面上,吕宋海峡东侧的大洋上有永久存在的SSH高值中心。另外在1995年1~7月期间有一次完整的黑潮流环脱离黑潮主体并在南海北部向西南方向移动的过程。  相似文献   

8.
通过对Argos浮标资料的分析,针对黑潮能否在吕宋海峡入侵南海的问题进行了研究,结果表明:黑潮由吕宋海峡入侵南海主要发生在秋、冬两季,春、夏季基本上不发生。而入侵主要是以流的形式传入,秋季少量的入侵水会有分支沿台湾海峡北上,冬季黑潮自吕宋海峡入侵南海后向西进入南海腹部。并对其季节变化原因作了初步讨论,该区域风应力和黑潮流量的季节性变化可能是重要原因。  相似文献   

9.
根据黑潮源区吕宋岛附近(18°N,122.5°E)投放的ADCP测得的流速,发现次表层流动与海表黑潮(Kuroshio,KC)流动并不一致,除了流动方向不同外,次表层吕宋潜流(Luzon Undercurrent,LUC)在500~1000 m深度存在一个低频季节内周期变化(120 d),这一变化并非由海表黑潮的季节性变化引起。针对这一现象,结合混合坐标海洋模式(Hybrid Coordinate Ocean Model,HYCOM)数据,使用涡动能(Eddy Kinetic Energy,EKE)分析并追踪100~200 d周期温盐和流速变化异常,最终得出结论:吕宋潜流季节内变化存在两个频率的周期,较高频季节内变化(80 d)是由表层黑潮区的中尺度涡传递到次表层产生的,而低频季节内变化(100 d以上)由136°E附近的中尺度涡旋经过6~7个月的运动到达吕宋岛沿岸产生的。  相似文献   

10.
利用Argo 浮标资料研究西北太平洋三维声速分布特征   总被引:1,自引:0,他引:1  
利用西北太平洋海区2002~2009年的Argo浮标剖面温度、盐度资料构建成0.5°×0.5°水平分辨率的三维声速网格化资料,并据此分析该海区声速的空间分布及季节变化特征。研究表明:该海区10 m层等声速线分布的季节变化较为明显,春、冬季的等声速线几乎与纬线平行,黑潮流经区域等声速线呈现一定的弯曲。100 m层等声速线分布的季节变化较小:北赤道流区,等声速线从外海向近岸延伸;吕宋岛东南部沿海,等声速线向南弯曲;吕宋岛、台湾岛东部等声速线呈现偏北方向的弯曲;琉球群岛附近,等声速线朝北偏东方向弯曲。此外,研究海区存在深海声道,声道轴最深的区域主要在吕宋海峡和日本东南部海区,其中吕宋海峡处的声道轴有显著的季节变化特征。可见,利用Argo浮标资料可以初步得到西北太平洋声速的空间分布及其季节变化特征,随着Argo剖面资料的增多,对该海区的声速场认识将会愈加清晰。  相似文献   

11.
黑潮入侵南海对南海的温盐平衡、环流、涡旋和局地气候等具有重要作用。基于吕宋海峡处黑潮不同流径的识别方法,对1993~2021年的卫星高度计资料进行识别,获取黑潮不同流径的发生时间,探究黑潮入侵南海流径的时间变化规律。结果表明:(1)黑潮主要以流套(Looping)和分支(Leaking)两种流径入侵南海,Leaking流径发生的时长(710周)和概率(46.9%)要远高于Looping流径(时长218周,概率14.4%)。(2) Looping流径和Leaking流径均可将高温高盐的西北太平洋水带入南海,Looping流径下的平均吕宋海峡上层通量(6.3×106 m3/s)略大于Leaking流径(5.6×106 m3/s)Looping和Leaking流径在4×106 m3/s~6×106 m3/s区间发生时间最长。(3)季节变化上,Looping流径主要发生在冬季,Leaking流径在冬半年均较强,夏季二者发...  相似文献   

12.
黑潮是北太平洋副热带环流系统的一支重要的西边界流。前人对不同流段黑潮的季节和年际变化进行了诸多研究,然而基于不同数据所得结论仍存在差异,尤其是不同模式计算所得流量差别很大,而且以往研究往往着眼于某一流段,对不同流段黑潮变化之间的异同及其原因涉及较少。本文基于卫星高度计数据,评估了OFES(Ocean generalcir culation model For the Earth Simulator)和HYCOM(Hybrid Coordinate Ocean Model)两个模式对吕宋岛和台湾岛以东黑潮季节与年际变化的模拟能力,进而对两个海域黑潮变化的异同及其物理机制进行了分析。结果表明:HYCOM模式对黑潮季节变化的模拟较好,而OFES模式对黑潮年际变化的模拟较好。吕宋岛以东黑潮和台湾岛以东黑潮在季节与年际尺度上的变化规律均不相同,且受不同动力过程控制。吕宋岛以东黑潮呈现冬春季强而秋季弱的变化规律,主要受北赤道流分叉南北移动的影响;而台湾岛以东黑潮呈现夏季强冬季弱的变化特点,主要受该海区反气旋涡与气旋涡相对数目的季节变化影响。在年际尺度上,吕宋岛以东黑潮与北赤道流分叉及风应力旋度呈负相关,当风应力旋度超前于流量4个月时相关系数达到了-0.56;而台湾岛以东黑潮的流量变化则受制于副热带逆流区涡动能的变化,且滞后于涡动能9个月时达到最大正相关,相关系数为0.44。本研究对于深入理解不同流段黑潮的多尺度变异规律及其对邻近海区环流与气候的影响具有重要意义,同时对于黑潮研究的数值模式选取具有重要参考价值。  相似文献   

13.
热带气旋过境期间黑潮流轴变化的初步分析   总被引:1,自引:0,他引:1  
利用卫星高度计资料分析了热带气旋"艾碧"(Abe,9315)、"贝姬"(Becky,9316)、"莫拉克"(Morakot,0309)和"茉莉"(Melor,0319)对吕宋海峡及其附近海域黑潮流轴的影响。研究表明:1)吕宋海峡附近海域黑潮流轴容易受到热带气旋的影响而发生一定的变化。2)在热带气旋的作用下,黑潮流轴因中尺度涡的变异而变化;当吕宋海峡东侧的暖涡西移时,将使黑潮的流轴向西弯曲,有利于黑潮在该处的入侵。  相似文献   

14.
利用被动示踪物模拟对黑潮入侵南海的数值研究   总被引:1,自引:1,他引:0  
由于缺少观测数据和对黑潮水准确定义,很难识别出从太平洋入侵到南海的黑潮水团。本文基于一个经过观测验证的三维模式MITgcm,利用被动示踪物标记黑潮水,研究了入侵南海的黑潮水的时空变化。研究表明,在冬季,黑潮水入侵的范围最广,几乎占据了18°N-23°N和114°E-121°E的区域;并有一个分支进入台湾海峡;黑潮入侵的范围随深度增加逐渐减小。在夏季,黑潮水被限制在118°E以东,且没有分支进入台湾海峡;入侵的范围从海面到约205米是增大的,之后随深度增加逐渐减小。通过分析从2003年到2012年黑潮入侵的年际变化,与厄尔尼诺年和正常年相比,冬季黑潮入侵后向台湾海峡的分支在拉尼娜年是最弱的,这可能与中国大陆东南方向的风应力旋度有关。通过吕宋海峡的黑潮入侵通量(KIT)是西向的,其年平均值约为-3.86×106 m3/s,大于吕宋海峡通量(LST,约-3.15×106 m3/s)。250米以上的KIT约占了全深度通量的60-80%。此外,从2003年到2012年KIT与Niño 3.4指数的相关系数到达0.41,小于LST与Niño 3.4指数的相关系数0.78。  相似文献   

15.
A numerical study of the summertime flow around the Luzon Strait   总被引:3,自引:0,他引:3  
Luzon Strait, a wide channel between Taiwan and Luzon islands, connects the northern South China Sea and the Philippine Sea. The Kuroshio, South China Sea gyre, monsoon and local topography influence circulation in the Luzon Strait area. In addition, the fact that the South China Sea is a fairly isolated basin accounts for why its water property differs markedly from the Kuroshio water east of Luzon. This work applies a numerical model to examine the influence of the difference in the vertical stratification between the South China Sea and Kuroshio waters on the loop current of Kuroshio in the Luzon Strait during summer. According to model results, the loop current’s strength in the strait reduces as the strongly stratified South China Sea water is driven northward by the southwest winds. Numerical results also indicate that Kuroshio is separated by a nearly meridional ridge east of Luzon Strait. The two velocity core structures of Kuroshio can also be observed in eastern Taiwan. Moreover, the water flowing from the South China Sea contributes primarily to the near shore core of Kuroshio.  相似文献   

16.
1 IntroductionThe South China Sea (SCS) is the largestmarginal sea in the western Pacific (see Fig. 1). It con-nects with the SCS through the Taiwan Strait, with thePacific through the Luzon Strait, with the Sulu Seathrough the Mindoro and Balabac Straits and with theJava Sea and Andaman Sea through the Sunda Shelf(For convenience, here we refer to the section at 1.5°N,Fig. 2). It is shown that the seasonal SCS circulation ismostly affected by the summer/winter monsoon, andthe no…  相似文献   

17.
A P - vector method is optimized using the variational data assimilation technique(VDAT). The absolute geostrophic velocity fields in the vicinity of the Luzon Strait (LS) are calculated, the spatial structures and seasonal variations of the absolute geostrophic velocity field are investigated. Our results show that the Kuroshio enters the South China Sea (SCS) in the south and middle of the Luzon Strait and flows out in the north, so the Kuroshio makes a slight clockwise curve in the Luzon Strait, and the curve is strong in winter and weak in summer. During the winter, a westward current appears in the surface, and locates at the west of the Luzon Strait. It is the north part of a cyclonic gyre which exits in the northeast of the SCS; an anti-cyclonic gyre occurs on the intermediate level, and it exits in the northeast of the SCS, and an eastward current exits in the southeast of the anti-cyclonic gyre.  相似文献   

18.
1998年春夏南海温盐结构及其变化特征   总被引:11,自引:2,他引:11  
利用1998年5~8月“南海季风试验”期间“科学1”号和“实验3”号科学考察船两个航次CTD资料,分析了1998年南海夏季风暴发前后南海主要断面的温盐结构及其变化特征.观测发现,南海腹地基本被典型的南海水团所控制,但在南海东北部尤其是吕宋海峡附近,表层和次表层水明显受到西太平洋水的影响.季风暴发以后,南海北部表面温度有显著升高,升幅由西向东递减,而南海中部和南部表面温度基本没变,这使得南海北部东西向温度梯度和整个海盆南北向温度梯度均减小.北部断面表层盐度普遍由34以上降低到34以下,混合层均有所发展,是季风暴发后降水和风力加剧的结果.观测期间黑潮水跨越吕宋海峡的迹象明显但变化剧烈.4~5月,黑潮次表层水除在吕宋海峡中北部出现外,在吕宋岛以西亦有发现,表明有部分黑潮水从吕宋海峡南端沿岸向西进而向南进入南海.6~7月,次表层高盐核在吕宋海峡中北部有极大发展,但在吕宋岛以西却明显萎缩;虽然看上去黑潮水以更强的流速进、出南海,但对南海腹地动力热力结构的影响未必更大.一个超过34.55的表层高盐水体于巴拉望附近被发现,似与通过巴拉望两侧水道入侵南海的西太平洋水有关.  相似文献   

19.
Interannual variability of the Kuroshio intrusion in the South China Sea   总被引:13,自引:1,他引:13  
The interannual variability of intrusions of the Kuroshio into the South China Sea (SCS) is investigated using satellite remote sensing data supported by in-situ measurements. The mesoscale circulation of the SCS is predominantly wind-forced by the northeast winter and southwest summer monsoons. Although the region has been studied extensively, considerable uncertainty remains about the annual and interannual mesoscale nature of the circulation. The frequency and characteristics of Kuroshio intrusions and their effect on circulation patterns in the northeast SCS are also not well understood. Satellite observations of Sea Surface Temperature (SST) from the Tropical Rainfall Measuring Mission (TRMM) and the Advanced Very High Resolution Radiometer (AVHRR) and Sea Surface Height Anomalies (SSHA) from TOPEX/ Poseidon for the period 1997–2005 are used here to analyze the annual and interannual variability in Kuroshio intrusions and their effects on the region. Analysis of SST and SSHA shows the formation and characteristics of intrusions vary considerably each year. Typically, the intrusion occurs in the central region of Luzon Strait and results in an anticyclonic circulation in the northeastern SCS. However, in some years, the intrusion is located in the northern portion of Luzon Strait and a cyclonic intrusion results. Wind stress and wind stress curl derived from the National Aeronautics and Space Administration (NASA) QuikSCAT satellite scatterometer are used to evaluate the relationship between wind stress or wind stress curl and the presence of winter Kuroshio intrusions into the SCS.  相似文献   

20.
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号