首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2015年7月3日皮山6.5级地震发震构造初步研究   总被引:11,自引:1,他引:10       下载免费PDF全文
李金  王琼  吴传勇  向元 《地球物理学报》2016,59(8):2859-2870
基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面Ⅱ:走向100°/倾角30°/滑动角90°,矩心深度19 km,表明该地震为一次逆冲型地震事件.大部分MS3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,ML2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15 km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面Ⅱ的滑动角较为接近,绝大多数余震发生在断层面附近10 km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.  相似文献   

2.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   

3.
2010年河南太康MS4.6地震序列震源参数的精确确定   总被引:4,自引:0,他引:4       下载免费PDF全文
精确确定地震的震源机制解、震源深度和序列的相对位置是地震危险性分析的重要基础.2010年10月24日和2011年3月8日,河南太康地区分别发生MS4.6和MS4.1显著地震,为分析该弱震、少震区的地震危险性,本文利用CAP方法反演了震源机制解和震源深度,并结合深度震相波形记录进一步确认了深度的可靠性.结果显示,两次地震的震源机制解较为接近,均以走滑为主,深度也均为13km左右.此外,以主震作为参考事件,采用主事件法对余震的水平位置进行了相对定位,定位结果显示余震空间上分布的走向分别与主震震源机制解两个节面走向大致相同.本文结果为研究当地地震危险性提供了一定依据.  相似文献   

4.
陈晨  胥颐 《地球物理学报》2013,56(12):4028-4036
利用四川省地震台网的震相数据和双差定位方法对芦山MS7.0级地震及其余震序列进行了精确定位,根据余震分布确定了发震断层的位置和断层面的几何特征,并对余震活动进行了分析.结果显示,芦山MS7.0级地震的震中位于30.28°N、102.99°E,震源深度为16.33 km.余震沿发震断层向主震两侧延伸,主要分布在长约32 km、宽约15~20 km、深度为5~24 km的范围内.地震破裂带朝西南方向扩展范围较大,东北方向略小,余震震级随时间迅速衰减.震源深度剖面清晰地显示出发震断层的逆冲破裂特征,推测发震断层为大川—双石断裂东侧约10 km的隐伏断层.该断层走向217°、倾向北西,倾角约45°,产状与大川—双石断裂相比略缓,它们同属龙门山前山断裂带的叠瓦状逆冲断层系.受发震断裂影响,部分余震沿大川—双石断裂分布,西北方向的余震延伸至宝兴杂岩体的东南缘,与汶川地震的破裂带之间存在50 km左右的地震空区,有可能成为未来发生强震的潜在危险区.  相似文献   

5.
本文利用福建省地震台网、广东省地震台网和台湾"中央"气象局17个台的宽频带记录,使用CAP方法反演了2018年11月26日台湾海峡M_S6.2地震震源机制解,得到节面1走向/倾角/滑动角为89°/82°/-173°,节面2走向/倾角/滑动角为358°/84°/-7°,最佳拟合深度14km,矩震级5.8.使用双差定位获取了94个M_L2.0以上地震的精定位结果,结果显示,主震位于北纬23.36°,东经118.62°,震源深度10.43km.根据小震分布和构造应力场反演得到余震断层面走向和倾角分别为88°和60°.研究认为,台湾海峡6.2级地震发震构造为近EW向的台湾浅滩断裂,受南海板块张裂拉伸发育而成,孕震过程中有东山隆起东缘断裂的参与,推测在菲律宾板块对欧亚板块NW-SE向挤压碰撞背景下,近EW向的台湾浅滩断裂与近NS向的东山隆起东缘断裂交接部位属于强度薄弱区,最终产生高倾角右旋走滑错动而引发地震,余震主要沿台湾浅滩断裂分布.  相似文献   

6.
不同资料和方法给出的2019年6月17日四川长宁6.0级地震震源机制解存在较大差异,为了找到1个合适的震源机制解来研究此次地震的发震方式,通过数学方法得到了与现有震源机制解差别最小的中心震源机制解,节面I的走向、倾角、滑动角分别为194.78°、52.68°和139.16°,节面Ⅱ的走向、倾角、滑动角分别为312.44°、58.67°和45.22°,根据本次地震余震分布拟合得到的断层面的走向为312.17°,与中心震源机制的节面Ⅱ走向一致,因而推断节面Ⅱ为本次地震的发震断层面。之后,利用此次地震之前震源区地震的震源机制解,反演了震源区的震前构造应力场。结果表明,长宁6.0级地震的中心震源机制解和震源区震前应力场均为逆冲型为主兼走滑分量的类型,震前应力场压轴为NWW—SEE向,中间轴为NNE—SSW向,两轴倾角接近水平,而张轴较陡,表现为逆冲型的应力场。将反演得到的应力场投影到中心震源机制解给出的与余震分布一致的节面上,发现中心震源机制解的滑动角和应力场预测的滑动角差别仅为13.45°,表明此次地震受背景应力场控制而发生在先存的薄弱面上。  相似文献   

7.
利用南北地震带南段密集流动地震台阵的观测数据,采用波形互相关方法拾取Pn波走时,应用滑动时窗相关法识别sPn震相,通过sPn与Pn震相之间的走时差测定了芦山地震序列中28个ML4.0级以上余震的震源深度.结果表明,震源深度集中在10~20 km范围内,垂直余震带的北西-南东向震源深度剖面揭示,余震分布表现出西深东浅的特点,倾角大约为39°.这些余震在空间上具有较好的线性分布特征,推测可能发生在与主震有关的破裂面上或邻近位置,由此推测主震的破裂面倾角大约为39°.根据余震的空间分布特征,认为芦山地震的发震断层并非双石-大川断裂,可能是其东侧的一条隐伏断层.  相似文献   

8.
戴宗辉  李冬梅  王鹏  郑建常  王志才  李霞 《地震》2022,42(1):111-121
本文利用基于波形互相关的双差定位方法对2020年2月18日长清MS4.1地震序列进行了精定位计算, 共得到33个地震事件的精定位结果。 结果显示, 地震序列主要沿NW向分布, 在水平方向上具有自NW向SE迁移, 在深度上具有由浅向深迁移的特征; 序列震源深度主要集中在2~7 km, 其中, 主震的震源深度约2.8 km。 由于长清地震序列的地震数量较少, 为了更准确地了解长清地震序列的发震构造、 探索该序列的发生和发展过程, 本文采用CAP方法反演了主震的震源机制解, 其中, 节面Ⅰ走向223°、 倾角42°、 滑动角-160°, 节面Ⅱ走向117.9°、 倾角76.8°、 滑动角-49.8°, 最佳拟合震源矩心深度约2.8 km, 矩震级MW4.2。 结合区域构造特征分析认为, 长清MS4.1地震的发震断裂为孝里铺断裂和东阿断裂之间发育的一条浅层次生断裂。 在ENE向区域应力场作用下, 发震断裂产生高角度正断滑动, 并伴有左旋走滑分量, 从而引发长清地震序列。  相似文献   

9.
本文提出并试验了一种基于接收函数建立区域模型进行震源机制反演的方法.选取四川地震台网记录的M≥3且信噪比高的近震波形资料,反演得到了芦山地震序列中74个地震的震源机制.通过对震源深度和震源机制的综合分析,探讨了芦山地震的发震构造和区域应力场状态.采用接收函数方法反演获取了26个台站下方的S波速度结构,对不同区域的台站反演结果进行叠加平均,以此区域平均S波速度作为本文震源机制反演使用的区域模型的S波速度;区域模型的P波速度由经验公式给出.反演稳定性测试表明,使用不同模型或对原始波形记录加入随机噪声的反演结果与原始反演相比,震源深度最大误差为1km,断层面各参数误差水平也很低,且显示的发震类型是一致的,其中随机噪声带来的误差小于模型带来的误差.主震反演得到的震源机制解为:震源深度17km,矩震级6.47;节面Ⅰ走向213°,倾角51°,滑动角98°;节面Ⅱ走向20°,倾角40°,滑动角80°;显示芦山主震可视为纯逆冲型地震,发震构造可能是某个具有较大倾角的逆冲断层,而不是低缓的推覆构造的基底滑脱面.同时本文反演获取的73个M≥3余震的震源机制绝大多数也显示了类似的发震类型,逆冲型地震为67个,占92%,具有绝对优势;走滑型地震为5个,正断型地震为1个.其中5个走滑型地震中的4个均分布在震源区的东北端.整个芦山地震序列深度集中在12~20km,且沿震源区短轴的余震深度剖面有自西向东呈逐步变浅的趋势,呈现清晰的铲形断面结构,结合本地地质构造,可以推断芦山地震序列主要发生在龙门山前山断裂以东的逆冲推覆体内的一个隐伏断裂上.P轴方位角优势方位与区域应力场及汶川震源区南段的相一致,表明芦山序列地震活动主要受区域应力场控制,且汶川震后该区应该不存在应力场变化.P轴仰角随深度分布则显示了孕震层在浅部为脆性上地壳,而深部已经进入了中地壳低速层.断层面的几何形态简单,倾角均值在不同深度保持稳定在55°左右,与主震倾角接近,这与汶川震源区南段的研究结果明显不同,揭示了龙门山断裂带南段与此次芦山发震断裂在断层面几何形态上的明显差异.  相似文献   

10.
2016年1月21日01时13分13.0秒(北京时间),青海省海北州门源县发生MS6.4地震.为了更好地认识这次地震的发震构造,本文利用青海省地震台网和甘肃省地震台网的省级固定地震台站及部分流动地震台站记录到的波形资料,通过重新拾取震相和联合HYPOINVERSE 2000与HypoDD定位方法,对2016年1月21日青海门源地震序列ML≥1.8的189个地震事件进行了重新定位,并采用gCAP方法分别反演了主震的双力偶机制解和全矩张量解. 定位结果显示,主震位置为37.67°N、101.61°E,震源深度为11.98 km;余震序列展布方向为SE和NW两个方向、长度约16 km,震源深度优势分布为4~14 km,断层面倾向为SW方向. 利用gCAP方法得到的矩心深度在8~9 km之间. 结合野外地质调查结果,认为该次地震事件为一次逆冲型事件,其发震断层可能为北西向冷龙岭断裂与北西向民乐—大马营断裂之间的一条盲断层,推测由于印度板块与欧亚板块的碰撞挤压使得青藏高原北缘与阿拉善地块之间的东西向挤压而造成的断层应力失稳,从而形成门源地震.  相似文献   

11.
On 22 January 2003, the M w?=?7.6 Tecomán earthquake struck offshore of the state of Colima, Mexico, near the diffuse triple junction between the Cocos, Rivera, and North American plates. Three-hundred and fifty aftershocks of the Tecomán earthquake with magnitudes between 2.6 and 5.8, each recorded by at least 7 stations, are relocated using the double difference method. Initial locations are determined using P and S readings from the Red Sismológica Telemétrica del Estado de Colima (RESCO) and a 1-D velocity model. Because only eight RESCO stations were operating immediately following the Tecomán earthquake, uncertainties in the initial locations and depths are fairly large, with average uncertainties of 8.0?km in depth and 1.4?km in the north?Csouth and east?Cwest directions. Events occurring between 24 January and 31 January were located using not only RESCO phase readings but also additional P and S readings from 11 temporary stations. Average uncertainties decrease to 0.8?km in depth, 0.3?km in the east?Cwest direction, and 0.7?km in the north?Csouth direction for events occurring while the temporary stations were deployed. While some preliminary studies of the early aftershocks suggested that they were dominated by shallow events above the plate interface, our results place the majority of aftershocks along the plate interface, for a slab dipping between approximately 20° and 30°. This is consistent with the slab positions inferred from geodetic studies. We do see some upper plate aftershocks that may correspond to forearc fault zones, and faults inland in the upper plate, particularly among events occurring more than 3?months after the mainshock.  相似文献   

12.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

13.
于2011年3月11日发生在日本东北部的MW9.0级逆冲型板间地震是日本有地震记录以来震级最大的一次地震.本研究基于NIED F-net矩张量解目录中的震源机制解,选取两个长轴相互垂直的矩形区域进行应力场2D反演,获取了日本海沟俯冲带地区应力场的空间及时间分布图像.结果表明:主震前,俯冲带地区应力状态在空间上大体趋于一致,即应力轴(P轴、σ1轴及SHmax轴)系统性地倾向板块汇聚方向,P轴、σ1轴倾角整体偏缓(<30°),且远离震源区及日本海沟东侧区域内的应力轴倾角普遍大于主震震源区内应力轴倾角;主震前,受2003年5月26日在宫城县北部发生的MW7.0地震影响,位于MW9.0地震震源区西北侧的应力场出现明显扰动,σ1轴倾向顺时针偏转150°~180°,并于之后大体恢复至震前状态,同期其他地区没有明显变化,这种情况可能和主震断层局部(深部)的前兆性滑动有关;主震后,距离震源区较远处应力场变化不大,主震震源区内应力场发生显著改变,P轴及σ1轴均以大角度(>60°)倾伏于板块汇聚方向,SHmax轴顺时针偏转60°~90°且在日本海沟附近普遍平行于海沟轴.这项研究以时空图像的方式展示了大地震前应力场变化的特点,反映了大地震孕震过程中构造与地震的相互作用,对于理解大地震孕震过程有重要意义.  相似文献   

14.
We investigate mainshock slip distribution and aftershock activity of the 8 January 2013 M w?=?5.7 Lemnos earthquake, north Aegean Sea. We analyse the seismic waveforms to better understand the spatio-temporal characteristics of earthquake rupture within the seismogenic layer of the crust. Peak slip values range from 50 to 64 cm and mean slip values range from 10 to 12 cm. The slip patches of the event extend over an area of dimensions 16?×?16 km2. We also relocate aftershock catalog locations to image seismic fault dimensions and test earthquake transfer models. The relocated events allowed us to identify the active faults in this area of the north Aegean Sea by locating two, NE–SW linear patterns of aftershocks. The aftershock distribution of the mainshock event clearly reveals a NE–SW striking fault about 40 km offshore Lemnos Island that extends from 2 km up to a depth of 14 km. After the mainshock most of the seismic activity migrated to the east and to the north of the hypocenter due to (a) rupture directivity towards the NE and (b) Coulomb stress transfer. A stress inversion analysis based on 14 focal mechanisms of aftershocks showed that the maximum horizontal stress is compressional at N84°E. The static stress transfer analysis for all post-1943 major events in the North Aegean shows no evidence for triggering of the 2013 event. We suggest that the 2013 event occurred due to tectonic loading of the North Aegean crust.  相似文献   

15.
北京时间2019年4月24日04∶15,西藏自治区林芝市墨脱县发生了MS6.3地震,该地震位于印度板块与欧亚板块俯冲碰撞的东北犄角地区,构造背景十分复杂.本研究基于我们在东喜马拉雅构造结地区架设的宽频带地震台站记录的近震波形数据,结合中国和国际地震台网的波形和到时资料,对该地震的震源位置、震源机制解和破裂过程进行了重新确定.结果显示,此次墨脱6.3级地震发生在(94.56±0.01°E,28.41±0.01°N),震源深度为地表以下13.3±1.6(或海平面以下11.5±1.6)km.震源机制解走向/倾角/滑移角分别为202°/17°/20°,震源破裂较大的位置主要集中在初始破裂点NNE侧约5 km附近.结合其他地球物理和地质学资料,我们推测该地震位于主喜马拉雅逆冲断裂发生近90°突然偏转的大拐弯地区,桑构造结相对于其西侧南迦巴瓦构造结的西向俯冲和北向推挤是该地震发生的主要构造背景.  相似文献   

16.
芦山7.0级地震序列的震源位置与震源机制解特征   总被引:7,自引:0,他引:7       下载免费PDF全文
基于中国国家和四川区域数字地震台网记录,采用HypoDD方法精确定位了四川芦山ML2.0级以上地震序列的震源位置,采用CAP方法反演了36次ML4.0级以上地震的最佳双力偶震源机制解,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数,从而综合分析了芦山地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,7.0级主震的震源位置为30.30°N、102.97°E,初始破裂深度为15 km左右,震源矩心深度为14 km左右,最佳双力偶震源机制解的两组节面分别为走向209°/倾角46°/滑动角94°和走向23°/倾角44°/滑动角86°,可视为纯逆冲型地震破裂,绝大多数ML4.0级以上余震的震源机制也表现出与主震类似的逆冲破裂特征.ML2.0级以上余震序列发生在主震两侧,集中分布的长轴为30 km左右,震源深度主要集中在5~27 km,ML3.5级以上较大余震则集中分布在9~25 km的深度上,并揭示出发震断层倾向北西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向207°/倾角50°/滑动角92°,绝大多数余震发生在断层面附近10 km左右的区域.综合地震序列分布特征、主震震源深度和已有破裂过程研究结果,可以推测主震破裂过程自初始点沿断层的两侧扩展破裂,南侧破裂比北侧稍长,滑动量主要集中在初始破裂点附近,可能没有破裂到地表.综合本文研究成果、地震烈度分布和现有的科学考察结果,初步推测发震构造为龙门山山前断裂,也不排除主震震中东侧还存在一条未知的基底断裂发震的可能性.  相似文献   

17.
2015年9月17日6时54分32秒(北京时间)智利中部伊拉佩尔附近(震中31.57°S,71.67°W)发生了一次M_w8.3大地震,在此次地震震中以南约500 km处的马乌莱地区曾于2010年2月27日14时34分11秒发生过一次M_w8.8强震(震中36.12°S,72.90°W),两次地震余震分布区之间有约75 km的地震空区.本文利用远场体波与面波波形,基于有限断层模型,反演了这两次地震的震源破裂过程.结果显示这两次地震均为逆冲型大地震,2015年伊拉佩尔M_w8.3地震的平均滑动角度为107°,平均滑动量为2.43 m,平均破裂速度为1.82 km·s~(-1),标量地震矩为3.28×10~(21)Nm,95%的标量地震矩在104 s内得到了释放.最大滑动量约8 m,位于沿走向75 km,深度8 km处.2010年马乌莱M_w8.8地震的平均滑动角度为109°,平均滑动量为4.95 m,平均破裂速度1.90 km·s~(-1),标量地震矩为1.86×10~(22)Nm,95%的标量地震矩在121 s内得到了释放.最大滑动量约12.5 m,位于沿走向100 km,深度21 km处.2015年伊拉佩尔M_w8.3地震浅部更大的滑动量应该是其引起了较大海啸的一个原因.基于破裂滑动分布,我们计算了这两次地震引起的周边俯冲带上静态库仑应力变化,结果显示两次地震均显著增加了周边俯冲带上的库仑应力,2010年马乌莱地震使得2015.年伊拉佩尔地震震源区附近的库仑应力增加了(0.01~0.15)×10~5Pa,从应力积累的角度看,2010年马乌莱地震有利于2015年伊拉佩尔地震的发生,对后者的发生起到了促进作用.  相似文献   

18.
2014年鲁甸M_S6.5地震造成了极大的人员伤亡和经济损失,其孕震机理和动力学成因为国内外学者广泛关注.由于目前的反演主要采用单一的反演方法进行处理,导致结果的不确定性较大,使得该地震的发震构造及孕震机理等问题仍存在较大争议.针对目前研究存在的不足,本文基于近震波形求解震源机制解的gCAP(general Cut And Paste)方法和全波形拟合方法,分别反演了鲁甸地震主震及其9次余震的震源机制解,以此评价近震数据反演震源机制解结果的可靠性与稳定性.结果表明数据方位角覆盖对gCAP解的稳定性有较大影响.针对全波形拟合方法反演过程中,低频信号稳定、高频信号解析度高的特点,采用0.01~0.05Hz和0.01~0.2Hz分频段波形拟合思路:在低频段剔除拟合差的数据,进一步在高频段进行高解析度波形拟合,从而获得主震可靠稳定的震源机制解.研究结果表明鲁甸地震主震倾角为76°~83°、滑动角为-157°~-164°,为一次高倾角走滑型地震.两种方法获得的余震震源机制解比较一致,验证了结果的可靠性.研究结果显示,鲁甸地震的高倾角破裂特征,会导致其能量释放快速且完整,这可能是导致鲁甸地震地面破坏加重及缺乏较大震级余震的主要原因.  相似文献   

19.
2022年1月8日青海省海北州门源县发生MS6.9地震,震后产生了长约22 km的地表破裂带,青海、甘肃和宁夏等多地震感强烈。本文基于区域地震台网资料,通过多阶段定位方法对门源MS6.9地震早期序列(2022年1月8日至12日)进行了重定位,并利用gCAP方法反演了主震和MS≥3.4余震的震源机制和震源矩心深度,计算了现今应力场体系在门源MS6.9地震震源机制两个节面产生的相对剪应力和正应力。结果表明:门源MS6.9地震的初始破裂深度为7.8 km,震源矩心深度为4 km,地震序列的优势初始破裂深度主要介于7—8 km之间,而MS≥3.4余震的震源矩心深度为3—7 km;该地震序列的震源深度剖面显示震后24个小时内的地震序列长度约为25 km,与地表破裂带的长度大体一致,整体地震序列长度约为30 km,其中1月8日MS6.9主震和MS5.1余震位于余震区西段,1月12日MS5.2余震位于余震区东段。2022年1月8日门源MS6.9主震的震源机制解节面Ⅰ为走向290°、倾角81°、滑动角16°,节面Ⅱ为走向197°、倾角74°、滑动角171°,根据余震展布的总体趋势估计断层面走向为290°,表明此次地震为近乎直立断层面上的一次左旋走滑型事件;MS≥3.4余震的震源机制解显示这些地震主要为走滑型地震,P轴走向从余震区西段到东段之间大体呈现NE向到EW向的变化。现今应力场体系在门源MS6.9主震震源机制解节面Ⅰ上产生的相对剪应力为0.638,而在节面Ⅱ上的相对剪应力为0.522,表明这两个节面均非构造应力场的最大释放节面,这与2016年门源MS6.4地震逆冲型震源机制为构造应力场的最优释放节面有着明显差异。结合地质构造、震源机制和余震展布,2022年1月8日门源MS6.9主震的发震构造可能为冷龙岭断裂西段,其地震断层错动方式为左旋走滑。根据重定位结果、震级-破裂关系以及剪应力结果,本文认为门源地区存在一定的应力积累且应力未得到充分释放,该地区仍存在发生强震的危险。   相似文献   

20.
Both P- and S-wave arrivals were collected for imaging upper crustal structures in the source region of the April 20, 2013 Lushan earthquake. High-resolution, three-dimensional P and S velocity models were constructed by travel-time tomography. Moreover, more than 3700 aftershocks of the Lushan earthquake were relocated via a grid search method. The P- and S-wave velocity images of the upper crust show largely similar characters, with high and low velocity anomalies, which mark the presence of significant lateral and vertical heterogeneity at the source region of the Lushan earthquake. The characteristics of the velocity anomalies also reflect the associated surface geological tectonics in this region. The distributions of high velocity anomalies of both P- and S-waves to 18 km depth are consistent with the distributions of relocated aftershocks, suggesting that most of the ruptures were localized inside the high velocity region. In contrast, low P and S velocities were found in the surrounding regions without aftershocks, especially in the region to the northeast of the Lushan earthquake. For the relocated aftershocks of the Lushan earthquake from this study, we found that most aftershocks were concentrated in a zone of about 40 km long and 20 km wide, and were located in the hanging wall of Dayi–Mingshan fault. The focal depths of aftershocks increase from the southeast to the northwest region in the direction perpendicular to the fault strike, suggesting that the fault ruptured at an approximate dip angle of 45°. The main depths of the aftershocks in the northwest of the main shock are significantly shallower than expected, revealing the different seismogenic conditions in the source region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号