首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
淮南二叠纪煤及其燃烧产物地球化学特征   总被引:11,自引:1,他引:11  
采用仪器中子活化分析法INAA(instrumental neutron activation analysis)测试了淮南煤田二叠纪主采煤层原煤煤样的地球化学组成,用X-射线荧光光谱XRFS(X-ray fluorescence spectrometry)测试了田家庵和洛河电厂的粉煤灰地球化学组成并与煤样作了对比分析,用电子探针测试了飞灰中主要类型颗粒的化学组成,淮南煤中多数微量元素属正常水平,与克拉克值相比,元素Se,S,As,Sb,Br,U和Cl等在煤中趋于富集,其他元素均趋于分散,有机亲和性弱的亲石元素趋于在粉煤灰中聚集,与铁关系密切的金属元素在粉煤灰中有明显的富集,有机亲合性强的元素在燃烧过程中趋于以气态形式向空气中逸散,粉煤灰中因矿物与粒度的分异明显,致使其化学组成在不同的粒度级和比重级中的分布也有较大的不同,飞灰中一些不定形颗粒主要由铁的氧化物和少量其他金属氧化物组成,硅酸盐类颗粒主要由硅,铝和铁的氧化物所组成,而玻璃珠主要由硅和铝的氧化物组成,残碳中测得的砷,硫和氯的含量最高,说明其对这些元素具有较强的吸附能力,研究粉煤灰的成分特点有助于粉煤灰的综合利用和评价其对环境的 影响。  相似文献   

2.
The aim of the present study is the petrographic and chemical characterization of the coal at the Figueira Power Plant, Paraná, Brazil, prior and after the beneficiation process and the chemical characterization of fly and bottom ashes generated in the combustion process.Petrographic characterization was carried out through maceral analysis and vitrinite reflectance measurements. Chemical characterization included proximate analysis, determination of calorific value and sulphur content, ultimate analysis, X-ray diffraction, X-ray fluorescence, Inductively Coupled Plasma — Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma — Atomic Emission Spectrometry (ICP-AES) analysis, and determination of Total Organic Carbon (TOC) content.Vitrinite reflectance analyses indicate a high volatile B/C bituminous coal (0.61 to 0.73% Rrandom). Maceral analyses show predominance of the vitrinite maceral group (51.6 to 70.9 vol.%, m.m.f). Except of the Run of mine (ROM) coal sample, the average calorific value of the coals is 5205 kcal/kg and ash yields range from 21.4 to 38.1 wt.%. The mineralogical composition (X-ray diffraction) of coals includes kaolinite, quartz, plagioclase and pyrite, whereas fly and bottom ashes are composed by mullite, ettringite, quartz, magnetite, and hematite. Analyses of major elements from coal, fly and bottom ashes indicate a high SiO2, Al2O3, and Fe2O3 content. Trace elements analysis of in-situ and ROM coals by ICP-MS and ICP-AES show highest concentration in Zn and As. Most of the toxic elements such as As, Cd, Cr, Mo, Ni, Pb, and Zn are significantly reduced by coal beneficiation. Considering the spatial distribution of trace elements in the beneficiated coal samples, which were collected over a period of three months, there appears to be little variation in Cd and Zn concentrations, whereas trace elements such as As, Mo, and Pb show a larger variation.In the fly and bottom ashes, the highest concentrations of trace elements were determined for Zn and As. When compared with trace element concentrations in the feed coal, fly ashes show a significant enrichment in most trace elements (As, B, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Tl, and Zn), suggesting a predominantly volatile nature for these elements. In contrast, Sn is distributed evenly within the different ash types, whereas U shows depleted concentration in both bottom and fly ash samples.According to the International Classification of in-seam coals the Cambuí coals are of para/ortho bituminous rank of low grade (except for the ROM sample), and are characterized by the predominance of vitrinite macerals.  相似文献   

3.
姚多喜  支霞臣  王馨 《地球化学》2003,32(5):491-500
采用ICP—MS法测试了褐煤、肥煤和无烟煤以及在不同燃烧条件下获取的飞灰、底灰等29个样品的稀土元素含量;分析了稀土元素地球化学特征。结果表明,不同煤种的稀土元素含量不同,相同煤种在不同燃烧条件下获取的飞灰、底灰中的稀土元素含量也不同;褐煤、肥煤、无烟煤及其燃煤产物飞灰、底灰的稀土元素分布模式呈左高右低的宽缓的“V”型曲线;Eu存在明显负异常。研究了燃煤过程中稀土元素的分布及集散规律,稀土元素在飞灰、底灰中的含量比原煤有明显提高,其增加幅度为几倍至20多倍不等,表明煤炭燃烧后稀土元素在飞灰、底灰中进一步聚集;飞灰和底灰中稀土元素含量、飞灰和底灰对煤的稀土元素含量比和富集因子以及飞灰对底灰的稀土元素含量比和富集因子等,不仅与原煤中稀土元素有直接关系,而且还受锅炉燃烧方式、燃烧温度(炉温)等人为因素的影响。  相似文献   

4.
华能南京电厂不同粒径粉煤灰的化学成分和矿物相组成基本相同,煤粉所含矿物质在高温燃烧过程中的挥发-凝聚作用,导致微量元素趋向细粒径粒煤灰中富集,其富集的程度则与粉煤灰的平均粒径和元素的地球化学性质密切相关,粉煤灰排放的环境效应表明,尤以细粒径灰粒的影响最大。  相似文献   

5.
Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents.  相似文献   

6.
In the process of combustion of coal organic and inorganic materials in it will undergo a complex variation.Part of thew will become volatiles and,together with coal smoke,enter into atmosphere,some will remain in micro-particulates such as ash and dust and find their way into atmosphere in the form of solid particles,and the rest will be retained in ash and slag.Coal ashes are the residues of organic and inorganic substances in coal left after coal combustion and the compostition of coal ashes in dependent on that of minerals and organic matter in coal.This paper deals with the chemical composition of coal ashes,the distribution of trace elements in them and their petrological characteristics,and also studies the relationship between the yield of coal ashes and the distribution of trace elements.In addition,a preliminary study in also undertaken on the factors that affect the chemical composition of coal ashes.As viewed from the analyses of coal ash samples collected from the Yanzhou mining district,it can be seen clearly that coal ashes from the region studied are composed chiefly of crystalline materials,glassy materials and uncombusted organic matter and the major chemical compositions are SiO2,Al2O3,Fe2O3,and CaO,as well as minor amounts of SO3,PWO5,Na2O,K2O and TiO2.During the combustion of coal,its trace elements will be redistributed and most of them are enriched in coal ashes.At the same time,the concentrations of the trace elements in flying ash are much higher than those of bottom ash,i.e.,with decreasing particle-size of coal ashes their concentrations will become higher and higher.So the contents of trace elements are negatively proportional to the particle-size of coal ashes.There has been found a positive correlation between the trace elements Th.V.Zn,Cu and Pb and the yield of coal ashes while a negative correlation between Cl and the yield of coal ashes.  相似文献   

7.
This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (<1%) Danville Coal Member of the Dugger Formation (Pennsylvanian) and the other mines the high-sulfur (>5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal.  相似文献   

8.
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals.  相似文献   

9.
Composition and quality of coals in the Huaibei Coalfield, Anhui, China   总被引:3,自引:0,他引:3  
The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust.  相似文献   

10.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

11.
Systematic changes in mineralogy, enrichment and depletion of selected elements, and mineralogical speciation of selected elements in fly ash and bottom ash samples from the Lingan Power Plant were compared to run-of-mine and pulverized feed coal from the Sydney coalfield, Nova Scotia, eastern Canada. The analytical techniques used were an electron microprobe equipped with energy and wavelength X-ray dispersive spectrometers, X-ray diffraction, neutron activation, scanning electron microscopy with energy dispersive X-ray and incident light petrography. Three types of glasses (Fe/O-rich, Fe/Al/Si/O-rich and or Al/Si/O-rich) were identified in the combustion residues; they were formed as a result of the interaction of melted pyrite and clay minerals. Compared to the feed coal, most elements were enriched 10 to20 times in the fly ash. The concentration of the elements in both the fly ash and bottom ash are comparable to coal ash that is generated by the low temperature asher in the laboratory. Some chalcophile elements such as arsenic and lead occurred as a solid solution in pyrite in the feed coal and were concentrated in the float fraction (density: <2.81 g/cm3) of the fly ash with non-crystalline Fe-oxides. X-ray mapping of arsenic in the fly ash and bottom ash indicates that arsenic was evenly distributed as oxide within the Fe/O- and Fe/Al/Si/O-rich glass and crystalline phases in the fly ash, possibly in solid solution. Arsenic is associated with Fe/O and Fe/S crystalline phases in the bottom ash.  相似文献   

12.
Feed coals and fly ashes from a coal-fired power station burning Alberta subbituminous coal were examined for a period of thirty-eight weeks to determine the variation in emitted mercury. Feed coal samples were analyzed for proximate, calorific value and Hg content, while fly ash samples were examined for C and Hg contents. The maceral content of the feed coal was also determined. The emitted mercury was calculated and compared to mercury emitted from the stack according to a mass-balance calculation from a previous study for the same station.Mercury contents ranged from 0.029 to 0.066 mg/kg for feed coal, and from 0.069 to 0.112 mg/kg for fly ash. The carbon/char in fly ash was separated into reactive (vitrinitic/bimacerate) and less reactive (inertinitic) chars using ZnBr2 at specific gravities of 1.7, 2.0, and 2.25 to 2.4. The result shows that there is a positive correlation between the carbon and mercury content of the fly ash. The reactive char particles in the fly ash may be responsible for the capture mercury in fly ash. The percentage of estimated captured mercury by fly ash increases with increasing carbon content (%) in fly ash. The percentage of emitted mercury for the period of 38 weeks is estimated to be within the range of 49% to 76% of the total input of mercury.  相似文献   

13.
煤燃烧过程中微量元素的迁移和富集   总被引:5,自引:0,他引:5  
煤中微量元素在燃烧过程中产生迁移与富集。大部分元素在煤的燃烧产物中得以富集,一些挥发性强的元素将扩散到大气中。在飞灰中,大部分环境有害元素的富集程度与其粒度成反比,即在细粒飞灰中更加富集,由此对人体健康的潜在危害也更大。在我国,大型燃煤电厂的环境问题值得重视,同时大量的民用炉灶产生的环境污染更加严重,值得进一步研究与治理。  相似文献   

14.
This study is focused on the occurrence and distribution of mineral matter and major and trace elements in the high volatile bituminous coal from Puertollano (south-central Spain). The relationship between ash behaviour and inorganic composition, as well as the possible formation of fouling and slagging deposits in boilers during the conversion process, were investigated. The Puertollano coals do not exhibit plastic properties, despite their rank, probably because of their high ash and inertinite contents.The Puertollano coal has medium to low total S content (0.48% to 1.63% db, with a mean of 1.0% db) and is characterised by relatively high contents of Si, Pb, Sb, and Cs. Some elements such as As, Cd, Co, Cr, Cu, Ge, Li, Mn, Ni, W, and Zn are also present in relatively high contents. The enrichment in a number of heavy metals could be attributed to the common sulphide ores occurring near the Puertollano coal deposit.The following trace elements affinities are deduced: (a) sulphide affinity: As, Co, Cd, Cu, Ni, Sb, Tl, and Zn; (b) aluminum–silicate affinity: K, Ti, B, Co, Cr, Cs, Cu Ga, Hf, Li, Nb, Rb, Sn, Ta, Th, V, Zr, and LREE; (c) Carbonate affinity: Ca, Mg, Mn, and B; (d) organic affinity: B.The very high Si levels and the anomalous enrichment in Cs, Ge, Pb, Sb, and Zn shown by the Puertollano coals account for the high contents of these elements in the Puertollano fly ash when compared with the other Spanish coal fly ashes.The chemical composition of the high temperature ash (HTA) is consistent with the trend shown by the ash fusion temperatures (AFT) and also with the predictive indices related to slagging and fouling propensities. Thus, the ash fusion temperatures increase with high values of Al2O3 as well as with the decrease in Fe2O3, CaO, and MgO.  相似文献   

15.
《Applied Geochemistry》2001,16(7-8):911-919
A total of 48 samples, feed (run-of-mine) coals and their combustion residues (fly ash and bottom ash) were systematically collected twice a week over a 4 week period (June 1998) from two boiler units (I and II) of the Cayirhan power plant (630 MW) that burns zeolite-bearing coals of late Miocene age. The feed coals are high in moisture (22.8% as-received) content and ash (44.9%) yield and total S content (5.1%), and low in calorific value (2995 kcal/kg). The mineralogy of the feed coals contains unusually high contents of the zeolites (clinoptilolite/heulandite and analcime), which are distributed within the organic matter of coal. Other minerals determined are gypsum, quartz, feldspar, pyrite, dolomite, calcite, cristobalite and clays. Common minerals in the crystalline phase of the combustion residues are anhydrite, feldspar, quartz, hematite, lime and Ca–Mg silicate. Minor and trace amounts of magnetite, cristobalite, maghemite, gehlenite, calcite and clinoptilolite/heulandite are also present in the combustion residues. Trace element contents of the feed coals, except for W, fall within the estimated range of values for most world coals; however, the mean values of Mn, Ta, Th, U and Zr are near maximum values of most world coals. Elements such as As, Bi, Ge, Mo, Pb, Tl, W and Zn are enriched more in the fly ash compared to the bottom ash.  相似文献   

16.
Leaching characteristics of fly ash   总被引:6,自引:0,他引:6  
The disposal of fly ash as a byproduct of thermic power stations, results in significant environmental problems. The leaching of coal fly ash during disposal is of concern for possible contamination, especially for the aquatic environment when ash is in contact with water. The aim of this study was to investigate the leaching behaviour of fly ashes currently disposed in Kemerkoy Power Plant (Turkey) fly-ash-holding pond. The studies were conducted with fly ashes from the electrostatic precipitators (fresh fly ash) and from the fly ash pond (pre-leached fly ash). The fly ashes has alkaline in nature and pH ranges between 11.9 to 12.2. The pre-leached fly ash exhibited lower EC values (7,400 µS) than the fresh fly ash (10,300 µS). In contrast to Fe and Pb, the elements such as Cr, Cd, Cu and Co did not leach from the fly ash. The Ca and Mn concentrations decreased with increasing temperature whereas, Na and K concentrations increased. The results showed that the most important effects of fly ash leaching were pH, Na, Ca, K, Fe, Mg, Mn and Pb.  相似文献   

17.
淮南煤田深部A组煤中有害微量元素地球化学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
以淮南煤田深部A 组煤为研究对象,全层刻槽采集了煤、夹矸和顶底板岩石样品,采用电感耦合等离子质谱仪 (ICP-MS) 测试分析了样品中13 种有害微量元素的含量,对比研究了其分布特征,结合Tessier 五步形态提取法和相关性分 析探讨了煤中有害微量元素的赋存形态。结果表明:(1) 与中国上陆壳中各种微量元素含量均值相比,淮南深部A 组煤中 B,As,Se,Mo,Cd,Pb,Hg 的富集系数均大于1,在A 组煤中表现为富集;A 组煤中B,As,Se,Cd 的含量均高于淮南煤 田上部B 组煤、华北煤以及中国煤中的含量均值;(2) 相关性分析和逐级提取实验结果表明,A 组煤中微量元素主要以残 渣态和铁锰氧化物结合态存在,两者质量分数之和达到55%~98%,其中Ni,Mo,Cd,Hg,Cu,Pb 和Zn 主要赋存于硫化物 矿物中,Mn 主要赋存于碳酸盐矿物中,V,Cr,Se,B 和As 主要赋存于硅铝酸盐等黏土矿物中。(3) B 元素示踪物源及沉 积环境结果显示,淮南煤田深部A 组煤成煤环境为海相咸水沉积环境,稳定的咸水沉积环境以及受海水影响等因素导致A 组煤中微量元素出现不同程度的富集。  相似文献   

18.
粉煤灰土壤及所产蔬菜的有害元素含量变化和环境意义   总被引:1,自引:0,他引:1  
利用南京第二热电厂湿排的粉煤灰,进行了改良蔬菜土壤的试验,并对试验用的粉煤灰、不同施灰量的土壤及所产蔬菜共38 个样品的有害元素和放射性元素含量进行了系统的测定。结果表明:这些元素在土壤中的含量与粉煤灰施用量无明显相关性;在本次试验范围内施用粉煤灰没有造成土壤的污染;其所产蔬菜的这些元素含量也均低于国家卫生标准限值,食用是安全的。  相似文献   

19.
The concentrations of major and trace inorganic elements in a succession of Permian coals from the Gunnedah Basin, New South Wales, have been determined by X-ray fluorescence techniques applied to both whole-coal and high-temperature ash samples. The results have been evaluated in the light of quantitative data on the minerals in the same coals, determined from X-ray diffraction study of whole-coal samples using a Rietveld-based interpretation program ( ™), to determine relationships of the trace elements in the coals to the mineral species present. Comparison of the chemical composition of the coal ash interpreted from the quantitative mineralogical study to the actual ash composition determined by XRF analysis shows a high degree of consistency, confirming the validity of the XRD interpretations for the Gunnedah Basin materials. Quartz, illite and other minerals of detrital origin dominate the coals in the upper part of the sequence, whereas authigenic kaolinite is abundant in coals from the lower part of the Permian succession. These minerals are all reduced in abundance, however, and pyrite is a dominant constituent, in coals formed under marine influence at several stratigraphic levels. Calcite and dolomite occur as cleat and fracture infillings, mostly in seams near the top and bottom of the sequence. The potassium-bearing minerals in the detrital fraction are associated with significant concentrations of rubidium, and the authigenic kaolinite with relatively high proportions of titanium. Zirconium is also abundant, with associated P and Hf, in the Gunnedah Basin coal seams. Relationships exhibited by Ti, Zr, Nd and Y are consistent with derivation of the original sediment admixed with the seams from an acid volcanic source. Pyrite in the coals is associated with high concentrations of arsenic and minor proportions of thallium; no other element commonly associated with sulphides in coals, however, appears to occur in significant proportions with the pyrite in the sample suite. Small concentrations of Cl present in the coal are inversely related to the pyrite content, and appear to represent ion-exchange components associated with the organic matter. Strontium and barium are strongly associated with the cleat-filling carbonate minerals. Ge and Ga appear to be related to each other and to the coal's organic matter. Cr and V are also related to each other, as are Ce, La, Nd and Pr, but none of these show any relationship to the organic matter or a particular mineral component.  相似文献   

20.
粉煤灰土壤主所产蔬菜的有害元素含量变化的环境意义   总被引:1,自引:0,他引:1  
利用南京第二热电厂湿排的粉煤灰,进行了改良蔬菜土壤的试验,并对试验用的粉煤灰,不同施灰量的土壤及所产蔬菜的38个样品的有害元素和放射性元素含量进行了系统的测定。结果表明:这些元素在土壤中的含量与粉煤灰施用量无明显相关性;在本次试验范围内施用粉煤灰没有造成土壤的污染,其所产蔬菜的这些元素含量也均低于国家卫生标准限值,食用是安全的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号