首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Based on the studies in Part Ⅰ (see Mao et al.2003),this paper further examines the relationship between the Asian summer monsoon onset and variation in meridional position of the warm temperature ridge with a zonal orientation in mid-upper troposphere.During the Asian monsoon bursting consequentially over the Bay of Bengal,South China Sea,and South Asia,in addition to the reversal of winds in the lower and upper troposphere and deep convection before and after the onset,the atmospheric meridional temperature gradient (MTG) in the vicinity of the ridge-surface of subtropical high (WEB defined in Part Ⅰ) exhibits a significant reversal.Since the establishment of temperature structure with higher over north than over south of the WEB in the mid-upper troposphere (200-500 hPa) characterizes the collective essential that the Asian summer monsoon bursts over different areas,the MTG in mid-upper troposphere,based on the thermodynamics associated with the seasonal transition,should be a reasonable index to measure the Asian monsoon onset.The definition for onset date is proposed,and the time series of onset date for different sections are determined.As compared with the onset dates determined by other indices such as 850-hPa zonal wind and OLR.correlation analyses indicate that the 850-hPa zonal wind is only regional index,but the MTG index is applicable universally to the Asian monsoon regime.  相似文献   

2.
The present study investigated diagnostically the seasonal variation of the bypassing flows caused by the splitting effect of the Tibetan Plateau (TP). The relationships among the splitting bypassing flows around the TP to precipitation in China, the westerly jet stream, and the thermal status over the TP are revealed. The bypassing flows occur from the 1st to the 22nd pentad and from the 59th to the 73rd pentad, respectively, and they disappear from the 29th to the 58th pentad. They are strongest in winter from the 1st to the 22nd pentad and from the 59th to the 73rd pentad, respectively. During the rebuilding of the bypassing flows from mid-October to mid-February, they are the main cause of precipitation over southeastern China. The enhancement of the bypassing flow intensity in March can cause the precipitation to increase in the early stage of the persistent spring rain over southeastern China. From winter to summer, the seasonal transition of the bypassing flows in the lower troposphere precedes that of the westerly jet stream axis in the upper troposphere to the west of the TP by ~4 pentads, while from summer to winter lags by ~4 pentads. The seasonal variation of the thermal status over the TP plays an important role in the bypassing flows around the TP. The strengthening of the heating over the TP weakens the bypassing flows, and the increase in cooling over the TP is related to the rebuilding and strengthening of the bypassing flows.  相似文献   

3.
Based on TBB data from GMS of Japan,NCEP/NCAR reanalysis data and precipitation data from CMAP(CPC Merged Analysis of Precipitation),an investigation is carried out of seasonal changes of precipitation and convection over Asian-Australian "land bridge" areas and its possible factors.The results show that the precipitation and convection over Sumatra take on clearly seasonal changes with abundant (less) rainfall in winter (summer).The convection over Sumatra moves northwestward rapidly along "land bridge" in the late-April and the early-May (the 25th pentad) and the rainfall shows similar variations.It is the accelerating of the convection moving that affects directly the subsequent enhancement of the convection over Indo-China Peninsula (ICP) area followed by the rupture of the subtropical high (SH) bands in this region leading to South China Sea (SCS) summer monsoon establishment.The zonal wind at lower troposphere in the equatorial Indian Ocean and the cross-equatorial flow in 105°E are the main factors associated with the accelerating of the convection moving northwestward along "land bridge".The further study suggests that the intensity of Sumatra convection has a close relation to the SST:when the central-east equatorial Pacific SST is warmer (colder),i.e.E1 Nino (La Nina) events,the SST in West Pacific warm pool is colder (warmer),Sumatra convection is weaker (stronger).  相似文献   

4.
Based on the infrared black body temperature (TBB) observed by the geostationary meteorological satellite FY-2E from 2010 to 2014, the seasonal migration, occurrence frequency, and intraseasonal variability of summer convection over the Tibetan Plateau (TP) and its surrounding areas are analyzed. The results show that in May, convection mainly occurs over the eastern edge of the TP;in June, following the onset of the Asian summer monsoon, the strongest (severe) convection occurs in the southeastern part of the TP;and in July-August, strong southwesterly winds transport abundant moisture to the eastern and central areas of the TP, leading to formation of an active convection belt over southeastern TP. The results also show that in the western TP, the area with convection frequency greater than 6% occupies the southern plateau around the 37th pentad, and gradually moves northward until the end of July;in the central plateau, convection (severe convection) becomes active since early (mid) June, and maintains through the entire late summer with three major northward movements until reaching 34°N;and in the eastern TP, the convection is relatively active since the beginning of May and its northward stretching is slightly later than that over the central plateau. Overall, summer convective activities are unevenly distributed over the TP, with frequency of convection decreasing from south to north;and they also exhibit considerable intraseasonal variability, the maximum of which is found over the middle reach of the Yarlung Zangbo River and the southeastern plateau. EOF analysis of summer convection frequency over the TP reveals two leading modes, with the first mode being a dipole variation pattern between the Indian monsoon region and the southeastern TP, and the second mode a tripole pattern over the western TP, the Indian continent west of 80°E, and the South Asian continent east of 80°E.  相似文献   

5.
The NCEP/NCAR reanalysis datasets and Climate Prediction Center(CPC) Merged Analysis of Precipitation(CMAP) rain data are used to investigate the large scale seasonal transition of East Asian subtropical monsoon(EASM) and its possible mechanism.The key region of EASM is defined according to the seasonal transition feature of meridional wind.By combining the ’thermal wind’ formula and the ’thermal adaptation’ equation,a new ’thermal-wind-precipitation’ relation is deduced.The area mean wind directions and thermal advections in different seasons are analyzed and it is shown that in summer(winter) monsoon period,the averaged wind direction in the EASM region varies clockwise(anticlockwise) with altitude,and the EASM region is dominated by warm(cold) advection.The seasonal transition of the wind direction at different levels and the corresponding meridional circulation consistently indicates that the subtropical summer monsoon is established between the end of March and the beginning of April.Finally,a conceptual schematic explanation for the mechanism of seasonal transition of EASM is proposed.  相似文献   

6.
The relationships between the 200-hPa westerly jet stream anomalies over the East Asian coastal water- western Pacific(WPJS),and the oceanic surface heating and synoptic-scale transient eddy(STE)activity anomalies over the North Pacific in wintertime are examined by using ERA-40 and NCEP/NCAR reanalysis data.The analysis demonstrates that the surface heating and the STE anomalies have different patterns, corresponding to the three WPJS anomalous modes,respectively.In the first WPJS anomalous mode,the WPJS main part shows no robust anomaly.The anomalous westerly wind,occurring over the mid-latitude central-eastern Pacific past the date line is associated with the anomalous heating presenting both in the tropical central-eastern Pacific past the date line and the center of the North Pacific basin.Meanwhile,the STE anomaly appears around the region of the anomalous zonal wind.The fluctuation in jet strength shown in the second WPJS mode is strongly related to the heating anomaly in the Kuroshio Current region and the STE anomaly in the jet exit region.The third mode demonstrates a northward/southward shift of the WPJS,which has a statistical connection with a south-north dipolar pattern of the heating anomaly in the western North Pacific separated at 35°N.Meanwhile,the STE spatial displacement is in conjunction with jet shifts in the same direction.The heating anomaly has a close connection with the atmospheric circulation, and thus changes the mid-latitude baroclinicity,leading to the STE anomaly,which then reinforces the WPJS anomaly via internal atmospheric dynamics.  相似文献   

7.
The onset process of the tropical eastern Indian Ocean (TEIO) summer monsoon (TEIOSM) and its relationship with the cross-equatorial flows are investigated via climatological analysis. Climatologically, results indicate that the earliest onset process of the Asian summer monsoon occurs over the TEIO at pentad 22 (April 15–20). Unlike the abrupt onset of the South China Sea (SCS) summer monsoon, the TEIOSM onset process displays a stepwise advance. Moreover, a close relationship between the TEIOSM development and the northward push of the cross-equatorial flows over 80–90E is revealed. A difference vorticity center, together with the counterpart over the southern Indian Ocean, constitutes a pair of difference cyclonic vortices, which strengthens the southwesterly wind over the TEIO and the northerly wind to the west of the Indian Peninsula from the end of March to late May. Therefore, the occurrence of the southwesterly wind over the TEIO is earlier than its counterpart over the tropical western Indian Ocean, and the cross-equatorial flows emerge firstly over the TEIO rather than over the Somali area. The former increases in intensity during its northward propagation, which provides a precondition for the TEIOSM onset and its northward advance.  相似文献   

8.
By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.  相似文献   

9.
The abrupt changes of zonal circulation in the Tibetan Plateau (TP) region and their likely causes are derived from National Centers for Environmental Prediction and the National Center for Atmospheric Research reanalysis data. The zonal circulation over the TP abruptly changed in summer (31st pentad) and winter (59th pentad). The switch from summer to winter circulation is characterized by a sudden northward shift of the westerlies and the zero-velocity curve and disappearance of the westerly jet. The winter–summer switch is characterized by the reverse pattern. Therefore, the circulation conversion between summer and winter can be judged from the position of the zero-velocity curve. Curves located north of 20 °N indicate summer circulation over the TP and vice versa. The abrupt change of zonal circulation is mainly caused by the thermodynamic effect of the TP. In June, this effect causes a huge monsoon circulation cell extending from the TP to low latitudes. Consequently, the westerlies jump to the north as easterlies develop. This process, which is enhanced by the strong northerly in Coriolis, establishes the summer circulation. In October, the Hadley cell recurs as the thermal effects of the TP diminish, the westerlies rush southward, and the winter circulation is established.  相似文献   

10.
The boreal summer intraseasonal oscillation(BSISO) is simulated by the Climate System Model(CSM) developed at the Chinese Academy of Meteorological Sciences(CAMS), China Meteorological Administration. Firstly, the results indicate that this new model is able to reasonably simulate the annual cycle and seasonal mean of the precipitation, as well as the vertical shear of large-scale zonal wind in the tropics. The model also reproduces the eastward and northward propagating oscillation signals similar to those found in observations. The simulation of BSISO is generally in agreement with the observations in terms of variance center, periodicity, and propagation, with the exception that the magnitude of BSISO anomalous convections are underestimated during both its eastward propagation along the equator and its northward propagation over the Asian–Pacific summer monsoon region. Our preliminary evaluation of the simulated BSISO by CAMS-CSM suggests that this new model has the capability, to a certain extent, to capture the BSISO features, including its propagation zonally along the equator and meridionally over the Asian monsoon region.  相似文献   

11.
中国东部夏季极端降水事件及大气环流异常分析   总被引:1,自引:0,他引:1  
主要利用1961~2014年中国东部地区438个台站的逐日降水资料和NCEP/NCAR的再分析资料,从大气内部动力角度对夏季不同极端降水情况下的环境场进行分析,结果表明:对长江中下游地区而言,在极端降水频次偏多年时,850 hPa风场及整层水汽输送距平场均表明东亚夏季风偏弱,有利于更多的水汽输送到长江中下游地区,500 hPa鄂霍次克海阻塞高压持续日数偏多,有利于冷空气南下,200 hPa东亚副热带急流偏南,且30°N以南偏西风异常有利于辐散,而在斜压波包从西北东南向传播为极端降水事件分发生集聚了能量;对华北地区极端降水频次偏多年而言,850 hPa风场及整层的水汽输送距平场均表明东亚夏季风偏强,有利于更多的水汽输送到华北地区,500 hPa高度距平场日本海正距平,贝加尔湖蒙古地区为负距平,华北地区东高西低,200 hPa东亚副热带急流偏北,从而导致我国华北地区极端降水频次偏多,能量传播也为西北东南向。这些结果表明极端降水的变化,与大气内部的动力作用和能量的传播有密切的关系。  相似文献   

12.
Climatological characteristics of subtropical anticyclone structure during seasonal transition are investigated based on NCEP/NCAR reanalysis data.The ridge-surface of subtropical anticyclone is defined by the boundary surface between westerly to the north and easterly to the south (WEB in brief).In Afro-Asian monsoon area,the subtropical high in troposphere whose ridgelines are consecutive in wintertime takes on relatively symmetrical and zonal structure,the WEB tilts southward with increasing height.In summer,the subtropical high ridgelines are discontinuous at low levels and continuous at upper levels,the WEB tilts northward from the bottom up.Under the constraint of thermal wind relation,the WEB usually tilts toward warmer zone.May is the period when subtropical high modality most significantly varies.The structure and properties of subtropical high during seasonal transition are different from area to area.A new concept "seasonal transition axis" is proposed based on formation and variation of the vertical ridge axis of subtropical anticyclone.The subtropical high of summer pattern firstly occurs over eastern Bay of Bengal in the beginning of May.then stabilizes over eastern Bay of Bengal,Indo-China,and western South China Sea in the 3rd pentad of May,it exists over the South China Sea in the 4th-5th pentad of May and establishes over central India in the 1st-2nd pentad of June.The three consequential stages when summer modal subtropical high occurs correspond to that of Asian summer monsoon onset,respectively.To a great extent,the summer monsoon onset over the Bay of Bengal depends on the reversal of meridional temperature gradient in vicinity of the WEB in upper troposphere.The meridional temperature gradient at middle-upper levels in troposphere can be used as a good indicator for measuring the seasonal transition and Asian monsoon onset.  相似文献   

13.
在“季节转换期间副热带高压带形态变异及其机制的研究Ⅰ :副热带高压结构气候学特征研究”的基础上 ,进一步讨论亚洲夏季风爆发与当地对流层中上层东西向暖脊的经向位置变化关系。亚洲夏季风相继在孟加拉湾、南海和南亚爆发期间 ,除了对流层高、低空风场及深对流活动在季风爆发前后具有反相的变化以外 ,副热带高压脊面附近大气经向温度梯度亦具有明显的反相特征。对流层中上层 (2 0 0~ 5 0 0hPa)脊面附近建立的北暖南冷的温度结构 ,能够反映亚洲各季风区夏季风爆发共同的本质特征 ,根据季节转换的热力学基础 ,指出对流层中上层经向温度梯度作为度量季风爆发的指标是合理可行的。文中提出了以副热带高压脊面附近对流层中上层大气经向温度梯度作为表征季节转换的指数 ,给出了确定季节转换开始日期的具体定义以及历年季节转换日期序列 ,同时给出由85 0hPa纬向风和OLR表征的季风爆发日期序列。相关分析表明 ,85 0hPa纬向风只是个区域性指标 ,而南北温度梯度具有一定的普适性  相似文献   

14.
利用NCEP/NCAR再分析资料研究了季节转换期间副热带高压结构的气候特征。在亚、非季风区 ,冬季副热带高压带是相对对称的 ,具有脊线连续的带状结构 ,脊面随高度增加向南倾斜 ;夏季副热带高压带中低层是间断的 ,高层是连续的 ,脊面随高度增加向北倾斜。副热带高压脊面倾斜受热成风关系的制约 ,总是倾向暖区。 5月份副热带高压形态变异最显著 ,不同地域副热带高压的结构、性质存在较大差异。夏季型副热带高压于 5月初首先出现在孟加拉湾东部 ,5月第 3候稳定建立在孟加拉湾东部、中南半岛及南海西部地区 ;5月第 4~ 5候在南海建立 ;6月第 1~ 2候在印度中部建立。夏季型副热带高压建立的 3个阶段与亚洲夏季风爆发的 3个阶段存在着较好的对应关系。孟加拉湾夏季风的建立在很大程度上取决于高空副热带高压脊面附近经向温度梯度的反转。对流层中上层副热带高压脊面附近经向温度梯度可以作为表征亚洲夏季风爆发的指标  相似文献   

15.
华西秋雨起止与秋冬季节大气环流转换   总被引:1,自引:0,他引:1  
袁旭  刘宣飞 《气象学报》2013,71(5):913-924
根据1961—2010年平均的逐候NCEP/NCAR再分析资料、1979—2008年平均的逐候CMAP降水资料以及1961—2010年逐候平均的中国553个台站降水资料,讨论了华西秋雨起止日期与秋冬季大气环流转换特征的关系。结果表明,华西地区降水年变化表现为明显的夏、秋双峰特征,8月4—8日(第44候)为双峰间的低谷,10月8—12日(第57候)以后降水降至年平均以下。由此,将华西秋雨建立和结束日期分别确定为8月9—13日(第45候)和10月8—12日(第57候)。华西秋雨的建立对应于东亚夏季风开始向冬季风转变,其标志性环流调整特征是江南地区的西南风转为东南风。东亚经向海平面气压梯度在8月9—13日(第45候)由南高北低转为南低北高,造成850 hPa江南地区的西南风转为东南风,该东南风与来自孟加拉湾的热带西南季风交汇于华西地区,形成风向和水汽的辐合,使得华西地区的降水在夏峰之后再次增强,华西秋雨由此建立。华西秋雨的结束则对应于孟加拉湾热带西南季风结束和东亚冬季风完全建立,其标志性环流调整特征是孟加拉湾地区的西南风转为东北风。随着东亚纬向海平面气压梯度由北向南依次发生东高西低向东低西高的转变,东亚冬季风也逐步向南推进,9月8—12日(第51候)东北冬季风到达江南地区,10月8—12日(第57候)进一步推进到南海地区,此时来自孟加拉湾的热带西南季风消失,造成华西地区完全受大陆冷高压控制,东亚季风经圈环流也转为冬季型哈得来环流,东亚冬季风完全建立,华西秋雨也随之结束。因此,华西秋雨起止可能与东亚夏季风、南亚夏季风向冬季风的转变时间不同步有关,东亚季风与南亚季风的共同作用使得华西秋雨成为亚洲夏季风在中国大陆上的最后一个雨季。  相似文献   

16.
亚洲夏季风爆发的深对流特征   总被引:9,自引:1,他引:9  
钱维宏  朱亚芬 《气象学报》2001,59(5):578-590
文中应用NOAA卫星反演的1980~1995年候平均对流层上部水汽亮温(BT)资料、向外长波辐 射(OLR)资料和美国NMC全球分析850 hPa风资料与美国CMAP降水资料作了对比分析,发现B T能够较好地反映中低纬度地区的深对流降水,偏南风场辐合区与深对流降水有比较一致的 关系,而OLR不能反映热带外地区的对流降水。BT资料所具有的这一特征可以应用于亚洲夏 季风爆发过程的深对流特征分析。BT描述深对流的临界值是244 K。亚洲季风区是全球深对 流季节变化范围和强度最大的地区。赤道外地区的夏季风爆发可以定义为来自热带地区深对 流的季节扩张。中南半岛上的夏季风对流发生在南海夏季风爆发之前。华南前汛期深对流是 中低纬系统相互作用的结果。第28候,南海夏季风的突然爆发在降水、风场和卫星反演 的深对流特征上都有明确的反映。南海夏季风爆发后,印度夏季风对流由南向北逐渐爆发, 青藏高原东侧和中国东部沿海的夏季风对流向北推进早于中国中部地区。  相似文献   

17.
青藏高原大气热力异常对西风急流的影响   总被引:1,自引:0,他引:1  
本文基于NCEP/NCAR月平均再分析资料,分析了对流层上层200 hPa纬向西风的时空变化特征,并通过EOF分解得到一个表征西风急流位置的指数(Westerly Jet Position Index,WJPI);同时基于对流层中上层(500~200 hPa)温度纬向偏差,构建了一个描述青藏高原(简称高原)大气热力特征的指标(Plateau Atmosphere Heating Index,PAHI),定量分析了该指数与西风急流位置的关系。结果表明:由冬到夏西风急流轴不断北抬西伸,风速逐渐减小;各季西风急流轴均处于西风变率的小值区,表明各季急流均轴的位置较稳定。各季PAHI与200 hPa纬向风的显著正相关区均分布在高原北侧,即高原PAHI增强时,其北侧西风增强,南侧西风减弱,对流层上层西风急流北移;各季WJPI与PAHI之间均存在显著相关,表明PAHI异常对西风急流位置的变化有重要作用。  相似文献   

18.
利用NCEP/NCAR发布的850 hPa风场和OLR场以及福建38个站月降水资料, 分析了福建夏季旱涝与东亚夏季风及西太平洋副高的关系。结果表明夏季旱涝与夏季风强弱及副高南北位置密切相关。涝 (旱) 年在东亚季风系统中的热带季风环流出现异常加强 (减弱), 副热带季风环流则出现异常减弱 (加强); 涝年副高平均脊线位置偏北于27°N附近, 旱年则偏南于24°N附近; 由春入夏, 再由夏入秋副高南北位置的季节位移, 涝年先是急速北跳, 而后又急速南撤, 旱年却进退平缓。旱涝年东亚中高纬度环流亦表现出不同特征, 涝 (旱) 年一般没有 (有) 出现阻塞形势, 中纬度纬 (经) 向环流发展, 副热带锋区北抬 (南压), 研究还进一步揭示了夏季副高位置南北偏离影响夏季各月降水及其分布的不同形式。  相似文献   

19.
The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified on the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 150-100 and 200 hPa, however, we found that the 200-hPa level could not reflect the real change of the upper-tropospheric circulation of Asian summer monsoon, especially the characteristics and variation of the tropical easterly jet which is the most important feature of the upper-tropospheric circulation. The zonal wind shear U850-U(150 100) is much larger than U850-U200, and thus it can reflect the strength of monsoon more appropriately. In addition, divergence is the largest at 150 hPa rather than 200 hPa, so 150 hPa in the upper-troposphere can reflect the coupling of the monsoon system. Therefore, WYI is redefined as DHI, i.e., IDH=U850* - U(150 100)*, which is able to characterize the variability of not only the intensity of the center of zonal wind shear in Asia, but also the monsoon system in the upper and lower troposphere. DHI is superior to WYI in featuring the long-term variation of Asian summer monsoon as it indicates there is obvious interdecadal variation in the Asian summer monsoon and the climate abrupt change occurred in 1980. The Asian summer monsoon was stronger before 1980 and it weakened after then due to the weakening of the easterly in the layer of 150-100 hPa, while easterly at 200 hPa did not weaken significantly. After the climate jump year in general, easterly in the upper troposphere weakened in Asia, indicating the weakening of summer monsoon; the land-sea pressure difference and thermal difference reduced, resulting in the weakening of monsoon; the corresponding upper divergence as well as the water vapor transport decreased in Indian Peninsula, central Indo-China Peninsula, North China, and Northeast China, indicating the weakening of summer monsoon as well. The difference between NCEP/NCAR and ERA-40 reanalysis data in studying the intensity and long-term variation of Asian summer monsoon is also compared in the end for reference.  相似文献   

20.
南亚高压上下高原时间及其与高原季风建立早晚的关系   总被引:5,自引:3,他引:2  
本文利用1948—2013年NCEP/NCAR逐日再分析资料,定义了南亚高压动态特征指数,讨论了南亚高压上下高原的时间以及与高原季风建立早晚的关系。研究表明,南亚高压北界位置在4月初开始北移,5月迅速北抬,最北可达到55°N,9月开始南撤,西伸脊点在5—10月移动较稳定,5—7月向西移动到青藏高原上空,8—10月向东移动撤离高原,11月—次年4月东西摆动剧烈。南亚高压初上高原大致为6月第3候(33候),而撤离约为10月第4候(58候)。南亚高压移上高原的时间较高原夏季风建立晚73 d左右。南亚高压撤离高原时间较高原冬季风建立约早5 d。高原夏季风的建立和南亚高压初上高原是青藏高原热力作用在不同阶段的结果,反映在了高原的高低层上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号