首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
STREAMFLOW CHARACTERISTICS OF THE EASTERN QINGHAI-XIZANG PLATEAU   总被引:1,自引:0,他引:1  
The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain chains. Annual runoff generally increases with precipitation which is augmented southward by the rise in topography. Rainfall, snow melt, glacier melt and groundwater are the primary sources of stream flow, and the presence of permafrost enhances the flashiness of runoff response to rainfall and snowmelt events. Peak flows are concentrated between June and September. And winter is low flow season. Three types of runoff patterns may be distinguished according to their primary sources of water supply: snowmelt and rainfall, glacier melt and snowmelt, and groundwater. Large rivers generally drain more than one environments and their runoff regime reflects an integration of the various flow patterns on the plateau.  相似文献   

2.
The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai-Xizang(Tibet)Plateau of China.The melt-water from the snow-cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring .So snowmelt runoff forecast has importance for hydropower,flood prevention and water resources utilize-tion.The application of remote sensing and Geographic Information System(GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper.The key parame-ter-snow cover area can be computed by satellite images from multi-platform,multi-templral and multi-spectral.A clus-ter of snow-cover data can be yielded by means of the classification filter method.Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning .According to the typical samples extracting snow covered moun-tained in detail also.The runoff snowmelt models based on the snow-cover data from NOAA images and observation data of runoff,precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reser-voir,which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June.The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin.With the develop-ment of remote sensing technique and the progress of the interpretation method,the forecast accuracy of snowmelt runoff will be improved in the near future .Large scale extent and few stations are two objective reality situations in Chian,so they should be considered in simulation and forecast.Apart from dividing ,the derivation of snow cover area from satellite images would decide the results of calculating runoff.Field investigation for selection of the learning samples of different snow patterns is basis for the classification.  相似文献   

3.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

4.
By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007-2011 are simulated, and variations and characteristics of major hydrological components are discussed. The results show that the meltwater runoff contributes 67.4%, of the proglacial discharge, out of which snowmelt, clean ice melting, buried-ice ablation and ice-cliff backwasting account for 22.4%, 21.9%, 17.9% and 5.3% of the total melt runoff, respectively. Rainfall runoff is significant in mid-latitude glacierized mountain areas like Tianshan and Karakorum. In the Koxkar glacier catchment, about 11.5% of stream water is initiated from liquid precipitation. Spatial distributions for each glacial runoff component reveal the importance of climatic gradients, local topography and morphology on glacial runoff generation, and temporal variations of these components is closely related to the annual cycle of catchment meteorology and glacier storage. Four stages are recognized in the seasonal variations of glacier storage, reflecting changes in meltwater yields, meteorological conditions and drainage systems in the annual hydrological cycle.  相似文献   

5.
Runoff coefficients of the source regions of the Huanghe River in 1956–2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had at- tracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual pre- cipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is –3.9oC, temperature is the main factor in- fluencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area be-tween Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients be-come insignificant.  相似文献   

6.
The characteristics of climatic change and river runoff, as well as the response of river runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p=0.05), while slightly increased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects river runoff by influencing temperature and precipita-tion. The NAO and precipitation had apparent significant correlations with the river runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s river runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased river runoff in the west of the northern Xinjiang.  相似文献   

7.
Variation of Thornthwaite moisture index in Hengduan Mountains,China   总被引:2,自引:1,他引:1  
The Thornthwaite moisture index, an index of the supply of water(precipitation) in an area relative to the climatic demand for water(potential evapotranspiration), was used to examine the spatial and temporal variation of drought and to verify the influence of environmental factors on the drought in the Hengduan Mountains, China. Results indicate that the Thornthwaite moisture index in the Hengduan Mountains had been increasing since 1960 with a rate of 0.1938/yr. Annual Thornthwaite moisture index in Hengduan Mountains was between –97.47 and 67.43 and the spatial heterogeneity was obvious in different seasons. Thornthwaite moisture index was high in the north and low in the south, and the monsoon rainfall had a significant impact on its spatial distribution. The tendency rate of Thornthwaite moisture index variation varied in different seasons, and the increasing trends in spring were greater than that in summer and autumn. However, the Thornthwaite moisture index decreased in winter. Thornthwaite moisture index increased greatly in the north and there was a small growth in the south of Hengduan Mountains. The increase of precipitation and decrease of evaporation lead to the increase of Thornthwaite moisture index. Thornthwaite moisture index has strong correlation with vegetation coverage. It can be seen that the correlation between Normalized Difference Vegetation Index(NDVI) and Thornthwaite moisture index was positive in spring and summer, but negative in autumn and winter. Correlation between Thornthwaite moisture index and relative soil relative moisture content was positive in spring, summer and autumn, but negative in winter. The typical mountainous terrain affect the distribution of temperature, precipitation, wind speed and other meteorological factors in this region, and then affect the spatial distribution of Thornthwaite moisture index. The unique ridge-gorge terrain caused the continuity of water-heat distribution from the north to south, and the water-heat was stronger than that from the east to west part, and thus determined the spatial distribution of Thornthwaite moisture index. The drought in the Hengduan Mountains area is mainly due to the unstable South Asian monsoon rainfall time.  相似文献   

8.
利用1971—2008年巴中地区4个站点的地面常规观测资料和滑动平均、MK法及MHF小波分析等统计诊断方法,分析了该地区降水和温度的年际、年代际的气候变化特征。结果表明:巴中地区的年均气温总体上表现出暖→冷→暖3个阶段,并呈现出8年的准周期变化特征;冬春气温的年代际变化显示出暖→冷→暖3个阶段性特征,而夏秋气温的年代际变化则显示出暖→冷→暖→冷4个阶段性特征。巴中地区的年降水量呈现出减少的趋势,递减率为13.813mm/10年;春季降水量低于全国的春季平均水平,夏、秋季平均降水量均高于全国的平均水平,且占到全年降水量的80%以上。巴中地区的年降水量存在较为显著的2年和6年的准周期变化,降水量增加和减少的突变较多显示出其复杂性。春、夏、秋三季的降水量有随温度升高而下降的趋势,而冬季的降水量有随温度的升高先增多后减少的趋势。巴中气候特征的分析对巴中农业区划和生产安排有其重要意义。  相似文献   

9.
四川巴中地区38年来气候变化特征分析   总被引:1,自引:0,他引:1  
利用1971—2008年巴中地区4个站点的地面常规观测资料和滑动平均、MK法及MHF小波分析等统计诊断方法,分析了该地区降水和温度的年际、年代际的气候变化特征。结果表明:巴中地区的年均气温总体上表现出暖→冷→暖3个阶段,并呈现出8年的准周期变化特征;冬春气温的年代际变化显示出暖→冷→暖3个阶段性特征,而夏秋气温的年代际变化则显示出暖→冷→暖→冷4个阶段性特征。巴中地区的年降水量呈现出减少的趋势,递减率为13.813mm/10年;春季降水量低于全国的春季平均水平,夏、秋季平均降水量均高于全国的平均水平,且占到全年降水量的80%以上。巴中地区的年降水量存在较为显著的2年和6年的准周期变化,降水量增加和减少的突变较多显示出其复杂性。春、夏、秋三季的降水量有随温度升高而下降的趋势,而冬季的降水量有随温度的升高先增多后减少的趋势。巴中气候特征的分析对巴中农业区划和生产安排有其重要意义。  相似文献   

10.
In this paper,the performance of the classic snowmelt runoff model(SRM)is evaluated in a daily discharge simulation with two different melt models,the empirical temperature-index melt model and the energy-based radiation melt model,through a case study from the data-sparse mountainous watershed of the Urumqi River basin in Xinjiang Uyghur Autonomous Region of China.The classic SRM,which uses the empirical temperature-index method,and a radiation-based SRM,incorporating shortwave solar radiation and snow albedo,were developed to simulate daily runoff for the spring and summer snowmelt seasons from 2005 to 2012,respectively.Daily meteorological and hydrological data were collected from three stations located in the watershed.Snow cover area(SCA)was extracted from satellite images.Solar radiation inputs were estimated based on a digital elevation model(DEM).The results showed that the overall accuracy of the classic SRM and radiation-based SRM for simulating snowmeltdischarge was relatively high.The classic SRM outperformed the radiation-based SRM due to the robust performance of the temperature-index model in the watershed snowmelt computation.No significant improvement was achieved by employing solar radiation and snow albedo in the snowmelt runoff simulation due to the inclusion of solar radiation as a temperature-dependent energy source and the local pattern of snowmelt behavior throughout the melting season.Our results suggest that the classic SRM simulates daily runoff with favorable accuracy and that the performance of the radiation-based SRM needs to be further improved by more ground-measured data for snowmelt energy input.  相似文献   

11.
利用金沙江流域30个气象站46年的气温与降水资料,运用线性相关分析法和小波分析法对金沙江流域的气温和降水在年与四季中的变化及空间分布特征进行分析。结果表明:流域的年均气温在20世纪90年代后呈明显上升趋势,冬季增温效应最明显;流域的降水量总体呈不明显的增加趋势,春冬两季的降水量变化较明显。至2006年后,除时间尺度6a以下,流域的气温在其他时间尺度上将处于偏高期。夏秋两季降水量在2006年后将处于偏低期,年、春冬两季降水量则将处于偏高期。流域的气温变化具有区域性差别,高值区与低值区分别位于流域的下游和上游地区;而降水的发生主要在流域的东北部。  相似文献   

12.
泰安市西南25km处的大汶口盆地东部出露泰山南麓最大的上泉岩溶泉群。上泉泉域边界清晰,受断裂构造、地层岩性控制。泉域东部云亭山、南山一带丘陵区寒武-奥陶纪碳酸盐岩夹碎屑岩裸露地表,接受大气降水直接入渗补给,西部山前倾斜平原地带浅覆盖或半裸露,除接受大气降水下渗补给外,还接受南留河渗漏和胜利水库季节性放水农灌回渗水补给,地下水动态受补给作用影响明显。泉域多年平均大气降水补给资源量约190万m~3,南留河渗漏补给资源量约259万m~3,农灌回渗水补给资源量约52万m~3,合计约501万m~3,扣除上泉泉群排泄量34万m~3,工农业和生活用水开采量约222万m~3,剩余约245万m~3在向泉域下游径流中逐渐向上顶托越流排泄于第四系松散岩类孔隙含水层中。为保护上泉泉群景观资源,本着"先看后用"的原则,应禁止在泉群上游增采岩溶地下水,可在泉群下游隐伏寒武纪炒米店组灰岩、张夏组灰岩分布区适当布井,夺取部分径流排泄资源量对泉群喷涌不会产生大的影响。  相似文献   

13.
reODUCTIONSthtrendanditsinfluencehaveattiactedInanresearchersinrecentyears.He(l994)exPloredthePOssibleeffectofSLRonZhuiang(Pear)fuverdeltaSSbyusingarelativelysimPletecboqUeofcollatingfutUreSthincrementswithrecenily-measuredtidalcharaCteristicvalues.Pengetal.(l994)usedasindlaraPProachtoinvestigatetheSthinf[uenceonTianinSS.SthhasqUitepronouncedimPatontheinteractionbetweenSSandATinshallowwater-SSandATgenesisaxegrealyinfluencedbylocalwaterdepthandtOpography-TocoPewiththenonlinearr…  相似文献   

14.
土地利用和气候变化对海河流域蒸散发时空变化的影响   总被引:1,自引:0,他引:1  
蒸散发(ET)是水文能量循环和气候系统的关键环节,研究ET的时空变化特征及其响应土地利用和气候变化的驱动机制对于理清流域水资源和气候变化的关系具有重要的意义。本文基于MOD16/ET数据集定量分析了海河流域2000-2014年ET的时空变化特征,并结合时序气温降水数据和土地利用数据,采用相关分析方法定量探索了ET与气候因子的驱动力关系。结果表明:① 海河流域2000-2014年ET表现为较为显著的空间分布格局,呈现出北部和南部高、西北部和中东部低的分布特性。不同土地利用类型的多年ET呈林地>草地>耕地>其他类型的特征;② 2000-2014年海河流域年均ET波动范围为371.96~441.29 mm/a,多年ET的均值为398.69 mm/a,平均相对变化率为-0.41%,整体呈下降趋势;③ 多年月ET与气温和降水均呈单峰型周期性变化趋势,年内月ET呈单峰变化趋势;④ 春秋两季的ET与降水和气温的相关性明显高于其他季节,ET与气温和降水的平均相关系数是-0.17和0.37,表明降水对于ET的响应程度强于气温;⑤ 驱动分区结果表明海河流域ET受气候因子驱动的主要类型是降水驱动型和降水、气温共同驱动型;⑥ 海河流域耕地ET变化气候因子驱动模式主要是降水、气温共同驱动型;林地、草地的驱动模式主要气温驱动型和降水驱动型,其他土地利用类型的驱动模式主要是受其他因素驱动。该研究将对海河流域水资源开发管理和区域气候调节起到科学指导作用。  相似文献   

15.
The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous landscapes. The runoff coefficient is a suitable tool to represent precipitation-runoff relations, but the spatial distribution of the runoff coefficient across tectonically active mountains in semi-arid environments has received little attention because of limited data availability. We calculated annual runoff coefficients over 22 years for 26 drainage basins across the semi-arid Qilian Mountains based on:(i) annual discharge records; and(ii) the China Meteorological Forcing Dataset to enhance our understanding of the precipitation-runoff processes. The mean annual runoff coefficients show no obvious spatial trends. When compared to potential controlling factors, mean annual runoff coefficients are highly correlated with mean slope rather than any climatic characteristics(e.g., mean annualprecipitation and Normalized Difference Vegetation Index). The slope-dependent runoff coefficient could theoretically have enhanced the topographic control on erosion rates and dampen the influence of precipitation. The enhanced discharge for drainage basins with less precipitation but steep topography in the western Qilian Mountains will enable fluvial incision to keep pace with ongoing uplift caused by the northward growth of the Qilian Mountains. The geomorphic implications are that tectonic rather than climatic factors are more significant for long-term landscape evolution in arid and semi-arid contexts.  相似文献   

16.
Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11°C/decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7°C/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamflow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5% 40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.  相似文献   

17.
受自然环境和技术方法制约,青藏高原岩溶发育演化和岩溶地下水循环特征研究相对薄弱,制约了青藏高原碳酸盐岩区的经济发展、民生设施建设和地质灾害防治。通过野外地质测量,岩溶地下水、地表水和大气降水水化学和同位素特征分析,泉水流量动态,水均衡计算和物探等技术方法,系统分析了四川省康定市北郊碳酸盐岩分布区的岩溶发育特征,识别了岩溶径流通道和岩溶大泉主要补给来源。结果表明:康定市北郊碳酸盐岩分布于高山峡谷地貌类型区,可溶岩地层分布、岩溶发育程度和岩溶水补给、径流、排泄均受构造控制,可溶岩与非可溶岩接触带和活动断裂附近的岩溶发育程度较强。岩溶水呈管道流径流,主要以岩溶大泉形式集中排泄,泉流量约1.5×104 m3/d且动态较为稳定。通过水文地质条件分析,识别出研究区存在通化组岩溶水径流带和雅拉河断裂岩溶水径流带。水化学-同位素数据、岩溶泉流量动态和水均衡计算结果显示,雅拉河河水是岩溶大泉的主要补给源,岩溶地下水主要沿雅拉河断裂岩溶水径流带径流并集中排泄。   相似文献   

18.
Precipitation is the dominant factor that controls vegetation growth and land-use practices in the arid and semiarid Mongolian Plateau(MP), so the spatiotemporal heterogeneity of precipitation change has been an important scientific question in the region. This study investigated the spatiotemporal characteristics of annual and seasonal precipitation across the entire MP based on monthly precipitation data from 136 meteorological stations during 1961–2014 by using a modified Mann–Kendall test, Sen's slope, Morlet Wavelet Transform, and geostatistical methods. Results show the following: 1) Annual precipitation decreased slightly from 1961 to 2014.Stations with positive and negative trends were 41.9%and 58.1%, respectively. Significant positive trends were mainly in the southwestern and northeastern regions of the plateau, whereas significant negative trends were in the northern and southeastern regions.2) Precipitation decreased at rates of-5.65 and-0.41 mm/decade in summer and autumn, respectively, but increased at 1.91 and 0.51 mm/decade in spring and winter. The contribution of spring and winter precipitation to the annual amount increased significantly, but that of summer precipitation decreased significantly. 3) A large majority of stations(80.2%) showed decreasing trends in summer,whereas 89.7% and 83.1% of stations showed increasing trends in spring and winter. The spatial distribution of trend magnitude in seasonal precipitation amount was strongly heterogeneous. 4)By climatic zones, precipitation increased in humid and arid zones, but decreased in a semiarid zone. On the whole, the MP experienced a drying trend, with significant regional differentiation and seasonal variations.  相似文献   

19.
《山地科学学报》2020,17(1):117-132
The climate change and unsustainable anthropogenic modification can intensify the vulnerability of the Himalayas. Natural springs are the principal source of potable water security for the Himalayan population. The changes in the trend of precipitation, temperature and glacier melt are expected to impact the quantity and quality of spring water significantly. This review presents an insight to unravel the effects of climate change and land use land cover changes on the spring resources and outline the essential elements of spring hydrology in the Himalayas. The sensitive response of spring flow to the climate has been observed to follows an annual periodic pattern strongly dependent on snowmelt,rainfall, and evapotranspiration. Among all types,Karst aquifers were found to be highly vulnerable. The changes in the forest and urban landscapes are affecting the recharging sites in the headwater region.In the Central Himalayan region(Kosi River basin,Kumaun), the number of perennial springs is decreasing at a rate of three springs year-1, and nonperennial springs are increasing at the rate of one spring year-1. The high concentration of NO3-, Cl-1,SO42-, and coliform counts reported from the spring water evidence a high susceptibility of shallow aquifers to the non-point source of pollution. Future projections indicate high surface-runoff and occurrence of extreme events such as floods, glacial lake outbursts, and landslides can affect the flow and water quality of springs. As the impact of climate change and anthropogenic activities are expected to increase with time remarkably, there is an urgent need to promote regional scientific studies on springs targeting hydrogeochemical evolution, vulnerability assessment, recharge area dynamics, and development of springshed management program.  相似文献   

20.
To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号