首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
侯康明 《内陆地震》1999,13(3):215-220
断层走滑包括粘滑和蠕滑,前者是伴有强震发生的快速运动,后者则是一种缓慢的无震稳滑运动,这2种运动常随时间交替出现,共同构成了断层的基本运动方式,在利用断层滑动速率讨论大震重复率的问题中,人们最关心的问题则是如何从总滑动量中分辨和划分出其中包包含的粘滑和蠕滑量,特别是对蠕滑量的划分,因为它直接影响大震重复率的正确性,笔者在野外考察的基础上,对昌马活动断鲜明的位移量进行了分级,确定出昌马断裂带全新以来  相似文献   

2.
昌马断裂带断层岩研究及其粘滑,蠕滑特征   总被引:2,自引:0,他引:2  
在对断层岩的分布、内部结构、宏观变形及断层泥中石英颗粒形态、表面特征研究分析的基础上,讨论了昌马断裂带粘滑、蠕滑特征。同时指出,昌马断裂带虽以粘滑运动为主,但仍伴有一定量的蠕滑活动。  相似文献   

3.
活动断裂带上的粘滑和蠕滑标志及其研究意义   总被引:4,自引:1,他引:4  
简要概述活动断裂带上粘滑与蠕滑标志研究进展,着重探讨活动断裂带中赋存的显微粘滑与蠕滑标志,立足于天然断错产物的微观观测与岩石实验成果相结合的分析,初步提出一些对比性较好的的活动方式标志,以此为活动断裂带粘滑和蠕滑段的划分提供微观依据,并就微观粘、蠕滑标志在断裂分段中的应用、定向微观活动方式标志的运动学和动力学意义以及利用其确定古地震期次和重复间隔等作了有益的讨论.  相似文献   

4.
本文以野外地质调查资料为依据,利用地质的方法,讨论了昌马断裂东段的断层崖特征、断层位移量和沿昌马断裂带的古地震证据,确定了断层崖年龄和断层活动速率,粗略地估算了大震复发周期。研究结果表明自全新世以来北东东向断裂的活动性质由压性变为左旋张扭性;断层崖是断裂左旋张扭性活动的结果。断层的水平位移具有分级特点,断层崖具有两个明显的坡度中断,其形成年龄分别为12760年和1880年。公元104年前后,沿昌马断裂可能发生过一次7~7(1/2)级地震,大震复发周期为2620年(考虑蠕滑)和1500年(不考虑蠕滑),12760年和1880年以来的断层水平运动速率分别为4.5毫米/年和6.5毫米/年,水平位移与垂直位移之比值为4.7。  相似文献   

5.
走滑断裂粘滑,蠕滑作用形成的地质貌特征   总被引:1,自引:0,他引:1  
侯康明  袁道阳 《地震地质》1995,17(3):253-258
在室内航片解释的基础上,依据野外现场实测资料,应用地质地貌学方法,对走滑断裂上有作用形成的弧形,“正”、“逆”牵引变形山脊及断错变形冲沟的4种地貌形态进行了讨论,并根据这些蠕滑志标,测量了昌马断裂带中、东段的蠕滑量。给出了粘滑与蠕滑量的比值及蠕滑量占总走滑量的比例在断裂带上的分布情况。  相似文献   

6.
走滑断裂粘滑、蠕滑作用形成的地质地貌特征   总被引:1,自引:0,他引:1  
在室内航片解释的基础上,依据野外现场实测资料,应用地质地貌学方法,对走滑断裂上由蠕滑作用形成的弧形,“正”、“逆”牵引变形山脊及断错变形冲沟的4种地貌形态进行了讨论,并根据这些蠕滑标志,测量了昌马断裂带中、东段的蠕滑量。给出了粘滑与蠕滑量的比值及蠕滑量占总走滑量的比例在断裂带上的分布情况  相似文献   

7.
沂沭活断层北段F_1断层滑动方式的讨论   总被引:5,自引:2,他引:5       下载免费PDF全文
通过野外调查和室内分析,并结合对比南段全新世粘滑破裂的特征,对沂沭活断层北段F_1的滑动方式进行了讨论。断层泥SEM的判别结果表明,晚更新世(Q_3)以前,北段F_1以强烈的粘滑错动为主,而宏观调查及断层泥粘土矿物的分析显示出断层自晚更新世中晚期以来,其滑动方式可能由粘滑向蠕滑转变。结合年代学的研究,初步认为其转变时代为距今5万a左右。该结论对沂沭断裂带及其附近地区的地震预报及工程建设均具有实际意义和参考价值  相似文献   

8.
王华林  侯珍清 《地震研究》1994,17(1):79-107
昌马断裂带是是青藏高原北部一条活动强烈的左旋走滑断裂带。它表现为重力、航磁、地壳厚度的综合异常梯度带,属于断面陡、切割深的超岩石圈断裂。昌马断裂带由12条长4公里至18公里不等的不连续的主断层和4条次级断层组成,可划分为东、中、西三大段落。断裂的水平位移和滑动速率具有分段性,全新世以来,东、中、西三段的左旋水平滑动速率分别为4.1毫米/年,2.6毫米/年和1.5毫米/年。北东东、北北西和北西西三个方向断层的位移具有分级特征,不同级别的位移具有良好的同步性。全新世以来北东东、北北西和北西西三个方向断层的水平滑动速率分别为4.1毫米/年、3.8毫米/年和2.7毫米/年。白垩纪以来,昌马断裂呈天平式运动,显示了枢纽断裂运动特征,枢纽轴位于断裂中段。昌马地震震源破裂性质及其反映的震源应力场与地震破裂带的破裂性质及其反映的构造应力场不一致。昌马地震震源机制解反映了北北西~南南东挤压,作用应力近于水平的震源应力场;昌马地震破裂带的变形组合反映了东北~南西挤压的构造应力场。昌马地震破裂带长120公里,分为东部正走滑段、中部逆走滑段和西部尾端破裂段,显示了多个水平位移峰值。全新世以来,沿昌马断裂发生了6次强震事件,强震复发  相似文献   

9.
本文对青藏高原东北缘一些主要断裂(包括阿尔金、昌马、毛毛山等断裂)的断层泥首次进行了研究。在对断裂带的内部结构、围岩成分、断层泥的厚度及石英颗粒表面特征等综合分析的基础上对断裂的活动年代、活动方式及断层泥形成的深度进行了讨论。石英颗粒表面上溶蚀程度(颗粒表面的光滑程度、凹凸现象及孔洞发育情况)可划分为6种类型并且每种类型都有相应的年代。根据断裂的粘滑、蠕滑特征,对该区的各活动断裂进行了粘滑段与蠕滑段的划分。用红外光谱与稀土元素的分析结果,算得断层泥形成的深度在地壳10km范围内。  相似文献   

10.
阿尔金断裂东段断层泥特征及断层滑动方式   总被引:4,自引:0,他引:4       下载免费PDF全文
本文用扫描电镜、X衍射等方法对阿尔金断裂东段断层泥的特征、断层活动强度及断层滑动方式进行了研究,获得了如下结论: (1)阿尔金断裂东段的活动强度自晚更新世以后,由西往东逐渐减弱。(2)该断裂东段在第四纪以来至少发生过2—3次古地震事件。(3)全新世以来,该断裂的肃北至阿克塞一段以粘滑为主,而东边的巴个峡至昌马大坝之间断裂的滑动方式则为蠕滑。  相似文献   

11.
The Yumen Fault lies on the west segment of the north Qilian Fault belt and adjacent to the Altyn-Tagh Fault,in the north margin of the Tibet Plateau.The tectonic location of the Yumen fault is special,and the fault is the evidence of recent activity of the northward growth of Tibetan plateau.In recent twenty years,many researches show the activity of the Yumen Fault became stronger from the early Pleistocene to the Holocene.Because the Yumen Fault is a new active fault and fold belt in the Qilian orogenic belt in the north margin of the Tibet Plateau,it is important to ascertain its slip rate and the recurrence interval of paleoearthquakes since the Late Pleistocene.Using the satellite image interpretation of the Beida river terrace,the GPS measurement of alluvial fans in front of the Yumen Fault and the trench excavation on the fault scarps,two conclusions are obtained in this paper.(1) The vertical slip rate of the Yumen Fault is about 0.41~0.48mm/a in the Holocene and about 0.24~0.30mm/a in the last stage of the late Pleistocene.(2) Since the Holocene epoch,four paleoearthquakes,which happened respectively in 6.12~10.53ka,3.6~5.38ka,1.64~1.93ka and 0.63~1.64ka,ruptured the surface scarps of the Yumen Fault.Overall,the recurrence interval of the paleoseismic events shortens gradually and the activity of the Yumen Fault becomes stronger since the Holocene.Anther characteristic is that every paleoearthquake probably ruptured multiple fault scarps at the same time.  相似文献   

12.
As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily. Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit. Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone.  相似文献   

13.
The Anninghe Fault has been suggested as an important segment of the fault system along the eastern boundary of the Sichuan-Yunnan faulted block in the southeastern region of the Tibetan plateau. Reliable determination of the Late Quaternary slip rate on the Anninghe Fault is very helpful and significant for revealing deformation mechanism and kinematic characteristics of the Sichuan-Yunnan faulted block, which further helps us understand fault activity and seismic potential of the region. However, previous studies were focused mainly on the northern segment of the Anninghe Fault, while slip rate on its southern segment has been less studied. Therefore, in this paper, we chose two sites at Dashuigou and Maoheshan on the southern segment of the Anninghe Fault, and used high-resolution images of unmanned aerial vehicle (UAV)photogrammetry technology, detailed field survey, multiple paleoseismic trenching and radiocarbon dating methods to constrain slip rate on the southern fault segment of the Anninghe Fault. Specifically, we suggest that the slip rate at the Dashuigouo site is narrowly constrained to be~4.4mm/a since about 3300aBP based on a linear regression calculation method, and speculate that a slip rate of 2.6~5.2mm/a at the Maoheshan site would be highly possible, although we poorly constrained the whole deformation amount of the two branch faults at the Maoheshan site from multiple paleoseismic trenching. The data at the two sites on the southern segment show a consistent slip rate compared with that of the northern segment of the Anninghe Fault. Moreover, considering a similar paleoseismic recurrence interval on the two segments of the Anninghe Fault from previous studies, we further suggest that the fault activity and deformation pattern on the two segments of the Annignhe Fault appears to be well consistent, which is also in agreement with the regional tectonic deformation.  相似文献   

14.
文中收集了1999—2015年天山地震带及其周边地区的GNSS数据,计算得到了速度场结果,并利用弹性块体模型计算了研究区域内各块体的闭锁深度和主要断层的滑动速率。研究结果表明:南天山断裂带西段的迈丹断裂的缩短速率处于高值状态,达(-6.3±1.9) mm/a,高于南天山东段;北天山断裂带西段的缩短速率同样高于东段。利用主要断裂带的滑动速率计算出各地震带的地震矩积累变化及1900年以来的地震矩释放变化量,以分析地震矩亏损分布,结果显示北天山山前断裂、迈丹断裂、额尔齐斯断裂带北段和喀什河断裂西段存在较大的地震矩亏损,具有孕育7级以上地震的潜能,而北轮台断裂、柯坪断裂带中段则呈现地震矩盈余状态,在未来的一段时间内不具备发生强震的可能。  相似文献   

15.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

16.
The Bolokonu-Aqikekuduke fault zone(Bo-A Fault)is the plate convergence boundary between the middle and the northern Tianshan. Bo-A Fault is an inherited right-lateral strike-slip active fault and obliquely cuts the Tianshan Mountains to the northwest. Accurately constrained fault activity and slip rate is crucial for understanding the tectonic deformation mechanism, strain rate distribution and regional seismic hazard. Based on the interpretation of satellite remote sensing images and topographic surveys, this paper divides the alluvial fans in the southeast of Jinghe River into four phases, Fan1, Fan2, Fan3 and Fan4 by geomorphological elevation, water density, depth of cut, etc. This paper interprets gullies and terrace scarps by high-resolution LiDAR topographic data. Right-laterally offset gullies, fault scarps and terrace scarps are distributed in Fan1, Fan2b and Fan3. We have identified a total of 30 right-laterally offset gullies and terrace scarps. Minimum right-lateral displacement is about 6m and the maximum right-lateral displacements are(414±10)m, (91±5)m and(39±1)m on Fan2b, Fan3a and Fan3b. The landform scarp dividing Fan2b and Fan3a is offset right-laterally by (212±11)m. Combining the work done by the predecessors in the northern foothills of the Tianshan Mountains with Guliya ice core climate curve, this paper concludes that the undercut age of alluvial fan are 56~64ka, 35~41ka, 10~14ka in the Tianshan Mountains. The slip rate of Bo-A Fault since the formation of the Fan2b, Fan3a and Fan3b of the alluvial-proluvial fan is 3.3~3.7mm/a, 2.2~2.6mm/a and 2.7~3.9mm/a. The right-lateral strike-slip rate since the late Pleistocene is obtained to be 3.1±0.3mm/a based on high-resolution LiDAR topographic data and Monte Carlo analysis.  相似文献   

17.
李光涛  苏刚  程理  李峰  吴昊 《地震地质》2019,41(3):545-560
中甸-大具断裂南东段位于哈巴和玉龙雪山北麓,属于川西北次级块体西南边界,断裂总体走向310°~320°,是一条重要的边界断裂。了解该断裂的活动性质、活动时代和滑动速率等对分析川西北次级块体运动,研究该断裂与玉龙雪山东麓断裂的交切关系等问题具有重要意义。文中基于1︰5万活动断层地质填图,对断裂沿线地层地貌、陡坎地貌、地表破裂、典型断层剖面以及河流阶地等进行了详细的研究。研究表明:1)中甸-大具断裂南东段按几何结构、断错地貌表现、断裂活动性可分为马家村—大具次级段和大具—大东次级段。2)通过野外地质调查发现,马家村—大具次级段断错了全新世冲洪积扇,形成了地表破裂,为全新世活动段;而大具—大东次级段虽然也断错了晚更新—全新世地层,但其断错规模及滑动速率均较小,由此认为其全新世以来活动较弱。3)通过分析断裂沿线断层陡坎、水平位错及地表破裂等地质地貌问题,认为马家村—大具次级段的活动性质为右旋走滑兼正断,其晚更新世以来的垂直滑动速率为0.4~0.8mm/a,水平滑动速率为1.5~2.4mm/a;大具—大东次级段以右旋走滑为主、正断为辅,其晚更新世晚期以来的垂直滑动速率为0.1mm/a。4)在大具盆地内发现的NW向地表破裂带的形成时代很年轻,不排除是1966年中甸6.4级地震或1996年丽江7.0级地震造成的地表破裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号