首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Drastic channel adjustments have affected the main alluvial rivers of Tuscany (central Italy) during the 20th century. Bed‐level adjustments were identified both by comparing available topographic longitudinal profiles of different years and through field observations. Changes in channel width were investigated by comparing available aerial photographs (1954 and 1993–98). Bed incision represents the dominant type of vertical adjustment, and is generalized along all the fluvial systems investigated. The Arno River system is the most affected by bed‐level lowering (up to 9 m), whereas lower incision (generally less than 2 m) is observed along the rivers of the southern part of the region. Human disturbances appear to be the dominant factors of adjustments: the main phase of vertical change occurred during the period 1945–80, in concomitance with the phase of maximum sediment mining activity at the regional scale. The second dominant type of adjustment that involved most of the rivers in the region consists of a narrowing of the active channel. Based on measurements of channel width conducted on aerial photographs, 38% of the reaches analysed experienced a narrowing greater than 50% of the initial channel width. The largest values of channel narrowing were observed along initially braided or sinuous with alternate bars morphologies in the southern portion of the region. A regional scheme of channel adjustments is derived, based on initial channel morphology and on the amounts of incision and narrowing. Different styles of channel adjustments are described. Rivers that were originally sinuous with alternate bars to braided generally became adjusted by a moderate incision and a moderate to intense narrowing; in contrast, sinuous‐meandering channels mainly adjusted vertically, with a minor amount of narrowing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Previous analyses have identified the active width of braided rivers, the bed area over which bed load flux and short‐term morphological change occurs, as an important element of braiding dynamics and predictions of bed load flux. Here we compare theoretical predictions of active width in gravel‐bed braided rivers with observations from Sunwapta River, and from a generic physical model of gravel braided rivers, to provide general observations of the variation in active width, and to develop an understanding of the causes of variation. Bed topography was surveyed daily along a 150 m reach of the pro‐glacial Sunwapta River for a total of four weeks during summer when flow was above threshold for morphological activity. In the laboratory, detailed digital elevation models (DEMs) were derived from photogrammetric survey at regular intervals during a constant discharge run. From the field and flume observations there is considerable local and circumstantial variation in active width, but also a general trend in average active width with increasing discharge. There is also a clear relationship of active width with active braiding index (number of active branches in the braided channel network), and with dimensionless stream power, which appears to be consistent across the range of data from field and physical models. Thus there is a link between active width and the river morphology and dynamics, and the possibility of a general relationship for estimating active width from channel pattern properties or reach‐scale stream power values, from which approximate bedload flux calculations may be made. The analysis also raises questions about differences between hydraulically‐based numerical model computations of instantaneous active width and observation of time‐integrated morphological active width. Understanding these differences can give insight into the nature of bedload transport in braided rivers and the relationship to morphological processes of braiding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Defining and measuring braiding intensity   总被引:1,自引:0,他引:1  
Geomorphological studies of braided rivers still lack a consistent measurement of the complexity of the braided pattern. Several simple indices have been proposed and two (channel count and total sinuosity) are the most commonly applied. For none of these indices has there been an assessment of the sampling requirements and there has been no systematic study of the equivalence of the indices to each other and their sensitivity to river stage. Resolution of these issues is essential for progress in studies of braided morphology and dynamics at the scale of the channel network. A series of experiments was run using small‐scale physical models of braided rivers in a 3 m ∞ 20 m flume. Sampling criteria for braid indices and their comparability were assessed using constant‐discharge experiments. Sample hydrographs were run to assess the effect of flow variability. Reach lengths of at least 10 times the average wetted width are needed to measure braid indices with precision of the order of 20% of the mean. Inherent variability in channel pattern makes it difficult to achieve greater precision. Channel count indices need a minimum of 10 cross‐sections spaced no further apart than the average wetted width of the river. Several of the braid indices, including total sinuosity, give very similar numerical values but they differ substantially from channel‐count index values. Consequently, functional relationships between channel pattern and, for example, discharge, are sensitive to the choice of braid index. Braid indices are sensitive to river stage and the highest values typically occur below peak flows of a diurnal (melt‐water) hydrograph in pro‐glacial rivers. There is no general relationship with stage that would allow data from rivers at different relative stage to be compared. At present, channel count indices give the best combination of rapid measurement, precision, and range of sources from which measurements can be reliably made. They can also be related directly to bar theory for braided pattern development. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Salmon populations are highly variable in both space and time. Accurate forecasting of the productivity of salmon stocks makes effective management and conservation of the resource extremely challenging. Furthermore, widespread and consistent data on the productivity of species‐specific and total salmon stocks in a river are almost nonexistent. Ranking rivers based on physical complexity derived from remote sensing allows rivers to be objectively compared. Our approach considered rivers with great geomorphic complexity (e.g. having expansive, multichanneled floodplains and/or on‐channel lakes) as likely to have greater productivity of salmon than rivers flowing in constrained or canyon‐bound channels. Our objective was to develop a database of landscape metrics that could be used to rank the rivers in relation to potential salmon productivity. We then examined the rankings in relation to existing empirical (monitoring) data describing productivity of salmon stocks. To extract the metrics for each river basin we used a digital elevation model and multispectral satellite imagery. We developed procedures to extract channel networks, floodplains, on‐channel lakes and other catchment features; variables such as catchment area, channel elevation, main channel length, floodplain area, and density of hydrojunctions (nodes) were measured. We processed 1509 catchments in the North Pacific Rim including the Kamchatka Peninsula in Russia and western North America. Overall, catchments were most physically complex in western Kamchatka and western Alaska, and particularly on the Arctic North Slope of Alaska. We could not directly examine coherence between potential and measured productivity except for a few rivers, but the expected relationship generally held. The resulting database and systematic ranking are objective tools that can be used to address questions about landscape structure and biological productivity at regional to continental extents, and provide a way to begin to efficiently prioritize the allocation of funding and resources towards salmon management and conservation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Although the channel morphology of upland fluvial systems is known to be strongly controlled by sediment supply from hillslopes, it is still difficult to isolate this effect from the other controlling factors of channel forms, such as the sediment transport capacity (depending notably on the size of the catchment) and local conditions (e.g. confinement, riparian vegetation, valley-floor slope). The rivers in New Caledonia offer an interesting field laboratory to isolate the morphological effect of contrasted sediment supply conditions. Some of these rivers are known to be highly impacted by the coarse sediment waves induced by the mining of nickel deposits that started in the early 1870s, which was particularly intensive between the 1940s and 1970s. The propagation of the sediment pulses from the mining sites can be traced by the presence of wide and aggraded active channels along the stream network of nickel-rich peridotite massifs. A first set of 63 undisturbed catchments in peridotite massifs distributed across the Grande Terre was used to fit a classic scaling law between active channel width and drainage area. A second set of 86 impacted sites, where the presence of sediment waves was clearly attested by recent aerial imagery, showed systematically wider active channels, with a width ratio around 5 (established from the intercept ratio of width–area power laws). More importantly, this second set of disturbed sites confirmed that the residual of active channel widths, computed from the scaling law of undisturbed sites, is statistically positively related to the catchment-scale relative area of major mining sediment sources. It is therefore confirmed that the characterization of sediment supply conditions is crucial for the understanding of spatial patterns of active channel width, and this should be more thoroughly considered in morphological studies of rivers draining environments with contrasted geomorphic activities on hillslopes. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

9.
G. R. Hancock  K. G. Evans 《水文研究》2006,20(14):2935-2951
Gullying is a significant process in the long‐term dynamics and evolution of both natural and rehabilitated (i.e. post‐mining) landscapes. From a landscape management perspective it is important that we understand gully initiation and development, as it is well recognized that catchment disturbance can result in the development of gullies that can be very difficult to rehabilitate. This study examines gully position using geomorphic statistics relating to features such as depth, width and length in a catchment undisturbed by European activity in the Northern Territory, Australia. The results demonstrate that gullying occurs throughout the catchment and that a slope–area threshold does not exist and that gully position broadly follows the catchment area–slope relationship. Simple relationships relating catchment area and slope to gully depth, width and length provide poor results, despite these relationships having been found to apply for ephemeral gullies in cropland. The results suggest that gully initiation thresholds are low as a result of an enhanced fire regime. A threshold model for gully position that uses catchment area and slope to switch between gully and hillslope was evaluated and found broadly to capture gully position. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Much research has been devoted to the development of numerical models of river incision. In settings where bedrock channel erosion prevails, numerous studies have used field data to calibrate the widely acknowledged stream power model of incision and to discuss the impact of variables that do not appear explicitly in the model's simplest form. However, most studies have been conducted in areas of active tectonics, displaying a clear geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the Ardennes region (western Europe) underwent a moderate 100–150 m uplift. We identify a set of knickpoints that have traveled far upstream in the Ourthe catchment, following this tectonic perturbation. Using a misfit function based on time residuals, our best fit of the stream power model parameters yields m = 0.75 and K = 4.63 × 10‐8 m‐0.5y‐1. Linear regression of the model time residuals against quantitative expressions of bedrock resistance to erosion shows that this variable does not correlate significantly with the residuals. By contrast, proxies for position in the drainage system prove to be able to explain 76% of the residual variance. High time residuals correlate with knickpoint position in small tributaries located in the downstream part of the Ourthe catchment, where some threshold was reached very early in the catchment's incision history. Removing the knickpoints stopped at such thresholds from the data set, we calculate an improved m = 0.68 and derive a scaling exponent of channel width against drainage area of 0.32, consistent with the average value compiled by Lague for steady state incising bedrock rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Previous work on stream channels in upland areas of Britain has demonstrated a close control over channel morphology and stability by the rate of coarse sediment supply from the hillslopes of the catchment. Streams fed by large amounts of coarse sediment develop unstable, wide, often braided channels, whereas those with limited coarse sediment supply develop stable, much narrower, often meandering channels. The sediment supply from hillslopes is controlled by thresholds of hillslope stability, storm event frequency, and the coupling between the hillslopes and the channel. Climatically-induced changes in any of these three factors may have implications for channel morphology and stability. This paper examines these implications in British upland fluvial systems, with particular reference to the Howgill Fells, Cumbria, in the contexts of the adjustment of stream channels to sediment supply from erosional gully systems, and their response to and recovery from major flood events.  相似文献   

12.
The dynamics of fluvial system evolution depend on fluvial processes and their driving forces associated with climatic variations, which affect changes in the morphology of river channels and floodplains. Neither channel slope and morphology, nor the properties of fluvial sediment have previously been considered as determinants of active braidplain widening on outwash plains (formed from valley/alpine glaciers and confined by pre-existing topography) in the High Arctic region and in the forefields of retreating glaciers. Factors determining widening of braidplain activity of the Waldemar River outwash (north-western Spitsbergen, Svalbard) were analysed on the basis of geomorphological, sedimentological, glaciological and meteorological research, and indicate significant multiple correlations between meltwater discharge, precipitation, braidplain width, morphology of the braided channel and the textural features of braidplain deposits. The capability of multivariate adaptive regression splines to detect these relationships was described, and threshold values were identified. The results indicate that the rate of active braidplain widening is proportional to the meltwater outflow in proglacial rivers, which can decrease despite a growing rate of glacial ablation. A proposed model enables us to predict zones of braidplain prone to widening activity in the High Arctic (humid) outwash fans and plains as well as fans developed in arid intermountain basins. The necessary conditions to activate braidplain widening processes were (1) spatial changes in the outwash feeding system due to glacier terminus retreat and (2) crossing the thresholds in passive factors (S and d50) controlling lateral erosion intensity. As a result, the braidplain reached a new dynamic equilibrium, in which high-magnitude–low-frequency extreme meltwater discharges were of particular importance in terms of braidplain dynamics and are the dominant controls on the pattern of distributary channels.  相似文献   

13.
In gravel‐bed rivers with well‐de?ned pool–bar morphology, the path length of transported bed particles must be, at least during ‘channel‐forming’ ?ows, equal to the length scale of the morphology. This is the basis for some methods for estimating bed material transport rates. However, previous data, especially from ?eld tests, are often strongly positively skewed with mean much shorter than the pool–bar spacing. One possible explanation is that positively skewed distributions occur only in channels lacking distinct pool–bar topography or only at lower discharges in pool–bar channels. A series of ?ume experiments using ?uorescent tracers was used to measure path length distributions in low‐sinuosity meandering channels to assess the relation with channel morphology and ?ow conditions. At channel‐forming ?ows, 55 to 75 per cent of the tracer grains were deposited on the ?rst point bar downstream of the point of tracer input, with 15 per cent passing beyond the ?rst bar. Path length distributions are symmetrical with mean equal to the pool–bar spacing and can be described with a Cauchy distribution. In some cases there was a secondary mode close to the point of tracer introduction; this bimodal distribution ?ts a combined gamma–Cauchy distribution. Only when discharge was reduced below the channel‐forming ?ow were frequency distributions unimodal and positively skewed with no relation to the pool–bar spacing. Thus, path length distributions become more symmetrical, and mean path length increases to coincide with pool–bar spacing, as ?ow approaches channel‐forming conditions. This is a substantial modi?cation of existing models of particle transfer in gravel‐bed rivers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power‐based classification and a physics‐based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and median bed particle size ranging over several orders of magnitude with various channel patterns and bar types, but no obvious eroding or aggrading tendency. Empirically a continuum is found for increasing specific stream power, here calculated with pattern‐independent variables: mean annual flood, valley gradient and channel width predicted with a hydraulic geometry relation. ‘Thresholds’, above which certain patterns emerge, were identified as a function of bed sediment size. Bar theory predicts nature and presence of bars and bar mode, here converted to active braiding index (Bi). The most important variables are actual width–depth ratio and nonlinearity of bed sediment transport. Results agree reasonably well with data. Empirical predictions are somewhat better than bar theory predictions, because the bank strength is indirectly included in the empirical prediction. In combination, empirical and theoretical prediction provide partial explanations for bar and channel patterns. Increasing potential‐specific stream power implies more energy to erode banks and indeed correlates to channels with high width–depth ratio. Bar theory predicts that such rivers develop more bars across the width (higher Bi). At the transition from meandering to braiding, weakly braided rivers and meandering rivers with chutes are found. Rivers with extremely low stream power and width–depth ratios hardly develop bars or dynamic meandering and may be straight or sinuous or, in case of disequilibrium sediment feed, anastomosing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Least action principle (LAP) in rivers is demonstrated by maximum flow efficiency (MFE) and is the foundation of variational mechanics based on energy and work rather than Newtonian force and momentum. Empirical evidence shows it to be the primary control for the adjustment of alluvial channels. Because most rivers flow with imposed water and sediment loads down valley gradients they have largely inherited, they self‐regulate energy expenditure to match the work they are required to do to remain stable. Overpowered systems develop a variety of channel patterns to expend excess energy and remain stable. Australia offers an opportunity to study low‐energy rivers closely adjusted to very low continental gradients. The anabranching Marshall and single‐thread Plenty Rivers flow down nearly straight channels with average H numbers [ratio between excess bed shear and width/depth (W/D) ratio] close to the optimum of 0.3 for stationary equilibrium. Ridge‐form divisions of the original channel width create anabranches that radically alter W/D ratios relative to bed shear, the same being true for short‐wide islands on the large low‐gradient Yangtze River in China. In contrast, Mount Chambers Creek in Australia's tectonically more active Flinders Ranges is accreting an alluvial fan with unstable distributary channels exhibiting H numbers well below the optimum. LAP also explains profound biases in Earth's stratigraphic record. Because meandering is an energy‐shedding mechanism, sinuous rivers sequester relatively little sediment resulting in all sequences being just a few tens of metres thick. In contrast, low‐energy braided disequilibrium systems can sequester sediment piles over a kilometre in thickness and tens of kilometres wide. LAP provides a new paradigm for river research by identifying the attractor state controlling river channel evolution. It links advances in theoretical physics to fluvial geomorphology, stratigraphy and hydraulic engineering and opens opportunities for diverse investigations in Earth system science. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Bedload pulses in gravel-bed rivers have been widely reported in recent years and attempts have been made to relate them to channel morphology. Bedload transport and channel morphology were measured in a small-scale generic model of braided gravel-bed streams. Two experiments are described in which braided channels developed in a 14 m × 3 m sand tray. Total bedload output from the tray was weighed every 15 minutes. Stream bed geometry was surveyed every four hours. Pulses were observed in the bedload output time series, and were qualitatively related to the channel morphology immediately upstream of the measuring section. The Bagnold (1980) bedload equation generally overpredicts measured bedload transport rates when applied to channels that were in equilibrium or aggrading. Underprediction occurred when applied to degrading channels. Aggradation was associated with channel multiplication and bar deposition. Channel pattern simplification occurred when degradation took place, and bars emerged from the water flow. Development of phases of aggradation and degradation is dependent upon the three-dimensional geometry of the stream beds. Spatial and temporal feedback loops can be identified, enabling links between channel morphology and bedload transport rate to be directly identified.  相似文献   

17.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
River islands are vital geomorphic units in alluvial rivers, and the variation of their morphology and position plays a significant role in regulating flow-sediment transport and channel stability. Based on the theories of minimum energy dissipation theory of fluid movement and river morphodynamics, this study uses the river islands in anabranching channels to analyze the relationship between the shape coefficient of river island and the flow-sediment dynamics under stable equilibrium conditions...  相似文献   

19.
Glacier retreat leads to changes in channel pattern during deglaciation, in response to changing water, sediment and base level controls. Recent ongoing retreat at Skaftafellsjökull, Iceland (c. 50 m per year since 1998) has resulted in the formation of a sequence of river terraces, and several changes in river channel pattern. This paper compares widely used models of river channel pattern against the changes observed at Skaftafellsjökull. Doing this reveals the role of topographic forcing in determining proglacial channel pattern, whilst examining the predictive power and limitations of the various approaches to classifying river channels. Topography was found to play a large role in determining channel pattern in proglacial environments for two reasons: firstly, glacier retreat forces rivers to flow through confined moraine reaches. In these reaches, channels which theory predicts should be braided are forced to adopt a single channel. Secondly, proximal incision of proglacial rivers, accompanied by downstream aggradation, leads to changes in slope which force the river to cross channel pattern thresholds. The findings of this work indicate that in the short term, the majority of channel pattern change in proglacial rivers is due to topographic forcing, and that changes due to changing hydrology and sediment supply are initially relatively minor, although likely to increase in significance as deglaciation progresses. These findings have implications for palaeohydraulic studies, where changes in proglacial channel pattern are frequently interpreted as being due to changes in water or sediment supply. This paper shows that channel pattern can change at timescales faster than hydrological or sediment budget changes usually occur, in association with relatively minor changes in glacier mass balance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We adopt a multidisciplinary approach toward the quantitative assessment of juvenile fish habitats in Alpine rivers using analytical modeling. The study focuses on braided and single-thread channel configurations together with their associated hydrodynamic patterns. A distinct difference between flows in these channels is the number and spatial arrangement of recirculation zones. These are due to the separation of flow from the river banks and result in a higher retention of flow in braided channels. Braided channels were also shown to provide more favourable shelter and nursing conditions for fish larvae and juveniles by mitigating high velocities during floods, by maintaining relatively shallow areas of flow, and by significant adjustments in the thermal regime. A historical analysis revealed a significant reduction of braided reaches along Alpine rivers that have most likely led to a significant degradation of the fish fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号