首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.  相似文献   

2.
We analyze the future dryness over Korea based on the projected temperature and precipitation. For fine-scale climate information, the ECHAM5/MPI-OM A1B simulation has been dynamically downscaled using the RegCM3 double-nested system. A 130-year long-term climatology (1971?C2100) from the mother domain (East Asia: 60 km) and nested domain (South Korea: 20 km) is discussed. Based on the intercomparison with CMIP3 participant models, the ECHAM5/MPI-OM provides climatic change information over the East Asia that is not markedly different from other projections. However, the reduction of summer precipitation over Korea is rather different with ensemble mean of CMIP3 participant models. The downscaled results generally follow the behavior of ECHAM5/MPIOM, but substantial fine-scale details are found in the spatial pattern and the change signals become more enhanced at the local scale. In the future projection, significant warming is found regardless of the season and region while the change in precipitation shows a mixed feature with both increasing and decreasing patterns. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the warmer climate. This is related to the negative trends of the self-calibrating Palmer Drought Severity Index (PDSI) to measure the drought condition in Korea. Although PDSI is overall associated with the precipitation variation, its long-term trend tends to be modulated by the temperature trend. It is confirmed that the detrended temperature is shown to mask the decreasing tendency of the PDSI. The result indicates that without an increase in precipitation appropriate for atmospheric moisture demand, future dryness is a more likely condition under global warming.  相似文献   

3.
Summary This study investigates the capability of the regional climate model RegCM3 to simulate surface air temperature and precipitation over the Korean Peninsula. The model is run in one-way double nested mode, with a 60 km grid point spacing “mother” domain encompassing the eastern regions of Asia and a 20 km grid point spacing nested domain covering the Korean Peninsula. The simulation spans the three-year period of 1 October 2000 through 30 September 2003 and the boundary conditions needed to run the mother domain experiment are provided from the NCEP reanalysis of observations. The model results are compared with a high density station observation dataset to examine the fine scale structure of the surface climate signal. The model shows a good performance in capturing both the sign and magnitude of the seasonal and inter-annual variations of the surface variables both over East Asia as a whole and over the Korean Peninsula in the nested system. Some persistent biases are however present. Surface temperature is systematically underestimated, especially over mountainous regions in the warm season. This feature may be due to the relatively coarse representation of the Korean topography. The simulated precipitation over the mother domain successfully reproduces the broad spatial pattern of observed precipitation over East Asia along with its seasonal evolution. On the other hand, fine scale details from the nested results show a varying level of quality for the different individual years. Because of the better resolved topographic forcing, the increased resolution of the nested model improves the spatial agreement with the fine scale observation fields for temperature and cold season precipitation. For summer monsoon precipitation the simulation of individual monsoon convective events and tropical storms is however more important than the topographic forcing, and therefore the performance of the nested system is more case-dependent.  相似文献   

4.
This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5° latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP/Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20?km resolution for 16 summer seasons (1990?C2005). The RSM produces realistic details in the regional summer precipitation at 20?km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93% (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92% (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.  相似文献   

5.
The outputs of three GCMs, ECHAM5, CCSM3 and HadCM3, are downscaled for the eastern Mediterranean–Black Sea region for the period 1961–1990 using a regional climate model, RegCM3, to assess the capability of these models in simulating the climatology of the region. In addition, the NCEP/NCAR Reanalysis data are also downscaled for the same period to display the performance of the regional climate model for the same region, which constitutes a relatively complex terrain and rich variety of climates. The gridded observational dataset of CRU is primarily used in the evaluation of the models, however, a regional dataset, which is based on a relatively dense gauging network, is also used to see how it affects the performance measures of the models. The reanalysis simulation indicates that RegCM3 is able to simulate the precipitation and surface temperature as well as the upper level fields reasonably well. However, it tends to overestimate the precipitation over the mountainous areas. All three GCM models are found to be highly skilled in simulating the winter precipitation and temperature in the region. The two models, ECHAM5 and HadCM3, are also good at simulating the summer precipitation and temperature, but the CCSM3 simulation generates dryer and warmer conditions than the observations for the whole region, which are most likely a result of the dryness in the upper levels of the original outputs. The use of the regional observational dataset does not necessarily improve the pattern correlations, but it yields better match between the modeled and observed precipitation in terms of variability and root-mean-square difference. It could be said that the outputs of these GCMs can be used in the climate change downscaling and impact assessment studies for the region, given that their strengths and weaknesses that are displayed in the present study are considered.  相似文献   

6.
唐民  吕俊梅 《气象》2007,33(10):88-95
利用全球陆地月平均降水资料、英国气象局哈德莱中心的月平均海表温度距平(SSTA)资料及NCEP/NCAR再分析大气环流资料,探讨东亚夏季风降水年代际变率及其与太平洋年代际振荡(PDO)的联系。研究指出:东亚夏季风降水年代际变异模态以及PDO均在1976年前后呈现显著的年代际转折,并且东亚夏季风降水与PDO在年代际尺度上具有较好的相关关系。PDO能够在对流层低层激发出与年代际东亚夏季风环流较为相似的大气环流异常特征,表明东亚夏季风环流的年代际变化可能受大气外强迫因子PDO在对流层低层的外源强迫作用影响,最终导致东亚夏季风降水发生年代际变化。  相似文献   

7.
华维  范广洲  王炳赟 《大气科学》2012,36(4):784-794
根据NCEP/NCAR、NCEP/DOE和ERA40再分析资料以及中国596个台站逐月降水观测资料,利用相关分析、小波分析和交叉谱分析等统计方法,分析了近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响,探讨了影响高原夏季风长期变化的可能原因.结果表明:高原夏季风具有年际和年代际的多时间尺度变化特征,在1958~2...  相似文献   

8.
印度洋偶极子对东亚季风区天气气候的影响   总被引:18,自引:1,他引:17  
利用NCEP/NCAR 40年再分析资料和中国科学院大气物理研究所的IAPAGCM-Ⅱ大气环流模式,分析和模拟了印度洋偶极子对东亚季风区天气气候的影响.结果表明,印度洋偶极子对东亚季风区天气气候,特别是夏季,影响显著.印度洋正偶极子位相期间,东亚地区的西南季风爆发偏晚,强度增强,我国大陆降水增多;而印度洋负偶极子位相期间,东亚地区的西南季风爆发偏早,强度减弱,我国的东南部地区有丰富的降水.  相似文献   

9.
A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as “field” or “global” significance. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ° grid resolution. Monthly temperature climatology for the 1990–2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. In winter and in most regions in summer, the downscaled distributions are statistically indistinguishable from the observed ones. A systematic cold summer bias occurs in deep river valleys due to overestimated elevations, in coastal areas due probably to enhanced sea breeze circulation, and over large lakes due to the interpolation of water temperatures. Urban areas in concave topography forms have a warm summer bias due to the strong heat islands, not reflected in the observations. WRF-NOAH generates appropriate fine-scale features in the monthly temperature field over regions of complex topography, but over spatially homogeneous areas even small biases can lead to significant deteriorations relative to the driving reanalysis. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is distribution-free, robust to spatial dependence, and accounts for time series structure.  相似文献   

10.
This study examines a future climate change scenario over California in a 10-km coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System for the ocean forced by the global Community Climate System Model version 3.0 (CCSM3). In summer, the coupled and uncoupled downscaled experiments capture the warming trend of surface air temperature, consistent with the driving CCSM3 forcing. However, the surface warming change along the California coast is weaker in the coupled downscaled experiment than it is in the uncoupled downscaling. Atmospheric cooling due to upwelling along the coast commonly appears in both the present and future climates, but the effect of upwelling is not fully compensated for by the projected large-scale warming in the coupled downscaling experiment. The projected change of extreme warm events is quite different between the coupled and uncoupled downscaling experiments, with the former projecting a more moderate change. The projected future change in precipitation is not significantly different between coupled and uncoupled downscaling. Both the coupled and uncoupled downscaling integrations predict increased onshore sea breeze change in summer daytime and reduced offshore land breeze change in summer nighttime along the coast from the Bay area to Point Conception. Compared to the simulation of present climate, the coupled and uncoupled downscaling experiments predict 17.5 % and 27.5 % fewer Catalina eddy hours in future climate respectively.  相似文献   

11.
We present an analysis of a high resolution multi-decadal simulation of recent climate (1971–2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm/day are simulated only at the high resolution of the double nested domain. (5) The model shows a tendency to overestimate the number of precipitation days and to underestimate the precipitation intensities. (6) A CSEOF analysis reveals that the model captures the strength of the annual cycle and the surface warming trend throughout the simulated period.  相似文献   

12.
亚洲季风区地面感热通量的区域变化特征   总被引:1,自引:0,他引:1  
采用1979-1995年(缺1986、1987、1993)NCEP/NCAR再分析资料中的逐旬感热通量资料,对亚洲季风区地面感热通量的空间结构及时间演变进行了旋转经验正交函数(REOF)分析。结果表明:印度半岛和中南半岛地区感势通量的变化与亚洲季风的爆发及演变有密切关系,是季风爆发的主要关键区。这两个地区的感热积累是东亚季风爆发的触发因素之一,尤其是印度半岛北部感热通量的突变对印度夏季风演变十分重要。印度半岛北部与青藏高原西部的热力差异在季风的爆发和维持中占有重要地位。而东北亚与西北太平洋的热力差异只对东亚夏季风的演变有影响,与冬季风则无直接关联。在东亚季风的爆发中居主导地位的还是印度半岛北部和青藏高原西北部的感热加热作用。  相似文献   

13.
季风指数及其年际变化I·环流强度指数   总被引:1,自引:0,他引:1  
季风环流可以分解为经向环流和纬向环流。使用NCEP和ECMWF再分析资料,计算亚洲季风区的经向动量环流和纬向动量环流强度的季节内和年际变化,结果表明:对于南亚夏季风和东南亚-西太平洋夏季风,其各自的经向环流和纬向环流的季节内变化和年际变化存在着相当的联系,尤其东南亚-西太平洋夏季风。但南亚夏季风的经向环流和纬向环流的年际变化在不同月份有着不同的关系。对于东亚夏季风,经向环流和纬向环流变化之间的相关在季节内尺度上是线性独立的,而在年际尺度上存在一定的联系。作者指出:这种大尺度上的联系是通过科里奥利力发生作用,并且受热源调节的。同时局地的对流和辐射相互作用则在某种程度上削弱这种联系,导致在不同月份相关程度有所不同。从各季风系统的经向环流之间或纬向环流之间的线性相关看,南亚夏季风,东亚夏季风和东南亚-西太平洋夏季风是相互独立的系统。计算表明,Webster-Yang和Wang-Fan分别提出的南亚夏季风指数在描述纬向环流年际变化上较好,而在经向上勉强令人满意。Wang-Fan提出的描述东南亚-西太平洋夏季风指数,则较好地表示了该区域的经向和纬向环流的年际变化。Goswami提出的季风Hadley环流指数,以及郭其蕴、施能等提出的东亚夏季风指数则较好地描述了相应区域的经向环流圈年际变化,却无法描述相应的纬向环流圈的年际变化。通过计算还表明,NCEP再分析资料和ECMWF再分析资料在1968年以前的南亚季风区和东亚季风区存在着较大的差异。用NCEP再分析资料计算东亚季风区和南亚季风区经向动量环流圈的变率在20世纪60年代较ECMWF的偏大。用NCEP再分析资料计算施能等定义的东亚季风区指数,也较使用ECMWF再分析资料、UCAR的DS010.1及CRU的北半球海平面气压资料计算的偏大。  相似文献   

14.
This study evaluates how statistical and dynamical downscaling models as well as combined approach perform in retrieving the space–time variability of near-surface temperature and rainfall, as well as their extremes, over the whole Mediterranean region. The dynamical downscaling model used in this study is the Weather Research and Forecasting (WRF) model with varying land-surface models and resolutions (20 and 50 km) and the statistical tool is the Cumulative Distribution Function-transform (CDF-t). To achieve a spatially resolved downscaling over the Mediterranean basin, the European Climate Assessment and Dataset (ECA&D) gridded dataset is used for calibration and evaluation of the downscaling models. In the frame of HyMeX and MED-CORDEX international programs, the downscaling is performed on ERA-I reanalysis over the 1989–2008 period. The results show that despite local calibration, CDF-t produces more accurate spatial variability of near-surface temperature and rainfall with respect to ECA&D than WRF which solves the three-dimensional equation of conservation. This first suggests that at 20–50 km resolutions, these three-dimensional processes only weakly contribute to the local value of temperature and precipitation with respect to local one-dimensional processes. Calibration of CDF-t at each individual grid point is thus sufficient to reproduce accurately the spatial pattern. A second explanation is the use of gridded data such as ECA&D which smoothes in part the horizontal variability after data interpolation and damps the added value of dynamical downscaling. This explains partly the absence of added-value of the 2-stage downscaling approach which combines statistical and dynamical downscaling models. The temporal variability of statistically downscaled temperature and rainfall is finally strongly driven by the temporal variability of its forcing (here ERA-Interim or WRF simulations). CDF-t is thus efficient as a bias correction tool but does not show any added-value regarding the time variability of the downscaled field. Finally, the quality of the reference observation dataset is a key issue. Comparison of CDF-t calibrated with ECA&D dataset and WRF simulations to local measurements from weather stations not assimilated in ECA&D, shows that the temporal variability of the downscaled data with respect to the local observations is closer to the local measurements than to ECA&D data. This highlights the strong added-value of dynamical downscaling which improves the temporal variability of the atmospheric dynamics with regard to the driving model. This article highlights the benefits and inconveniences emerging from the use of both downscaling techniques for climate research. Our goal is to contribute to the discussion on the use of downscaling tools to assess the impact of climate change on regional scales.  相似文献   

15.
利用NCAR CAM3.1模式及NCEP/NCAR (version 1)再分析资料计算出来的几种大气热源分布情况,分别讨论亚洲各地区和南半球上空夏季大气加热场(热源或冷源)对东亚季风环流系统和印度季风环流系统形成的影响.结果表明:(1)东亚地区上空的大气热源和澳大利亚冷源与东亚夏季风环流关系密切,东亚大陆上空及西太平...  相似文献   

16.
Performance of a regional climate model (RCM), WRF, for downscaling East Asian summer season climate is investigated based on 11-summer integrations associated with different climate conditions with reanalysis data as the lateral boundary conditions. It is found that while the RCM is essentially unable to improve large-scale circulation patterns in the upper troposphere for most years, it is able to simulate better lower-level meridional moisture transport in the East Asian summer monsoon. For precipitation downscaling, the RCM produces more realistic magnitude of the interannual variation in most areas of East Asia than that in the reanalysis. Furthermore, the RCM significantly improves the spatial pattern of summer rainfall over dry inland areas and mountainous areas, such as Mongolia and the Tibetan Plateau. Meanwhile, it reduces the wet bias over southeast China. Over Mongolia, however, the performance of precipitation downscaling strongly depends on the year: the WRF is skillful for normal and wet years, but not for dry years, which suggests that land surface processes play an important role in downscaling ability. Over the dry area of North China, the WRF shows the worst performance. Additional sensitivity experiments testing land effects in downscaling suggest the initial soil moisture condition and representation of land surface processes with different schemes are sources of uncertainty for precipitation downscaling. Correction of initial soil moisture using the climatology dataset from GSWP-2 is a useful approach to robustly reducing wet bias in inland areas as well as to improve spatial distribution of precipitation. Despite the improvement on RCM downscaling, regional analyses reveal that accurate simulation of precipitation over East China, where the precipitation pattern is strongly influenced by the activity of the Meiyu/Baiu rainfall band, is difficult. Since the location of the rainfall band is closely associated with both lower-level meridional moisture transport and upper-level circulation structures, it is necessary to have realistic upper-air circulation patterns in the RCM as well as lower-level moisture transport in order to improve the circulation-associated convective rainfall band in East Asia.  相似文献   

17.
利用NCEP/NCAR 1998年再分析资料和SS T资料, 研究了1998年南海季风爆发的特征及其机制。结果显示, 南海及其附近地区夏季风爆发分为3个阶段, 并具有不同的特征, 在南海季风爆发前, 南海海温已提前突然增温达极高值, 感热通量梯度在海陆之间的转换可能是引起东亚副热带季风和南海季风爆发的重要因子。  相似文献   

18.
常炉予  何金海  祁莉  温敏 《气象学报》2013,71(6):1074-1088
利用NCEP/ NCAR 再分析资料和CMAP、GPCP卫星反演降水资料,对比分析了东亚与北美东部地区降水和大尺度大气环流季节演变特征的差异。结果显示,东亚和北美东部地区冬季环流形势较为相似,而夏季差异则较大,这正是东亚为季风区,北美为非季风区的表现。此外,基于季风的两大特征量“风”和“雨”,分析了两地降水和低空风场季节变化的显著差异:东亚副热带地区降水季节变率大,呈“夏湿冬干”的季风降水特征,低层盛行风向随季节逆转,冬季盛行偏北风,夏季盛行偏南风,具有显著的副热带季风区特征。北美东部副热带地区全年雨量分配均匀,低层常年盛行偏西风,呈现非季风区特征。进一步的分析发现,作为季风基本推动力的海、陆热力差异在东亚和北美东部地区有着显著的区别:东亚地区的经向和纬向温度梯度随季节反转的特征显著;而北美东部地区虽有纬向温度梯度的季节反转但幅度很小,且经向海、陆热力差异随季节反转不明显。此外,与青藏高原和落基山脉相伴的纬向环流也存在显著差异。鉴于此,提出经向和纬向海、陆热力梯度反转特征的不同以及青藏高原和落基山脉地形的不同作用很可能是造成东亚副热带季风气候而北美东部非季风气候的主要原因,上述结论还有待于数值试验的进一步证实。  相似文献   

19.
NCEP/NCAR再分析资料所揭示的全球季风降水变化   总被引:4,自引:2,他引:2  
林壬萍  周天军  薛峰  张丽霞 《大气科学》2012,36(5):1027-1040
大气模式是研究气候变化的重要工具,当前的大气模式在模拟季风降水时均存在较大偏差,目前尚不清楚该偏差是来自模式环流场还是模式物理过程.再分析资料由于同化了各类观测和卫星资料,其大气环流近似可被视作是“真实”的.再分析资料中的降水场是在基本真实的环流场强迫下,由当前最先进的数值预报模式计算输出的.因此,再分析资料的降水场能...  相似文献   

20.
中国夏季降水的水汽通道特征及其影响因子分析   总被引:30,自引:5,他引:30  
利用NCEP/NCAR的1958~1998年再分析资料研究夏季东亚季风区水汽输送特征,综合这些特征划分出夏季输送到中国大陆主要有来自低纬的三条水汽通道:西南通道、南海通道和东南通道,此外在高纬还有一条很弱的西北通道,分别体现了南亚季风、南海季风、副热带季风和中纬度西风带对中国夏季降水的影响。定义和计算了四条水汽通道强度指数来表征水汽通道的强弱,并研究其年际变化。相关分析表明四条水汽通道对我国夏季降水的影响范围分别是:西南通道是华南中部和西南边境降水的水汽来源,南海通道对华南降水有直接贡献,东南通道为长江流域降水输送水汽,西北通道则为黄河中上游及华北东部降水输送水汽。物理分析显示,水汽输送异常与大气环流异常直接相关,而与同期水汽源地的海温异常关系不密切,海洋的作用主要体现在前期大范围的海温异常分布上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号