首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared to study the influence of the staircase on the stiffness, displacements and internal forces of the structures. To capture the yielding development and damage mechanism of frame structures, elasto-plastic analysis is carried out for one of the 18 models. Based on the features observed in the analyses, a new type of staircase design i.e., isolating them from the master structure to eliminate the effect of K-type struts, is proposed and discussed. It is concluded that the proposed method of staircase isolation is effective and feasible for engineering design, and does not significantly increase the construction cost.  相似文献   

2.
The current Indian Standard (IS) code for seismic design of structures (IS 1893:2002) specifies the use of time history analysis for structures with height greater than 40m. However, for structures less than 40m it recommends the concept of equivalent static analysis. This study attempts to investigate the adequacy of the current design code when it comes to the actual evaluation of structures shorter than 40 m subjected to seismic loading using dynamic analysis as opposed to the code specified static analysis. Incremental dynamic analysis, which subjects a structure to a progressively increasing series of intensity measures, has been adopted here for the purpose. Three 2D moment resisting steel structures under the 1991 Uttarkashi and the 2001 Bhuj earthquakes (both of which predate the current IS1893) have been studied—a single storeyed portal frame, a 2 storey 3 bay frame and a 3 storey 2 bay frame. While it can be argued that two records are never enough for any generalization, and that only a full probabilistic analysis can determine if the limiting collapse prevention probability has been exceeded for these structures, the IS code in both cases does significantly under predict the seismic demands on the structures. At the same time, and perhaps why the codal provisions usually work, the structural capacities are in most cases underestimated as well. These suggest that a thorough study is in order and that there is scope for rationalization in the IS codal provisions.  相似文献   

3.
Horizontal earth pressures on rigid vertical walls in liquefied soils have extensively been studied by many researchers for the level ground surface condition. In this paper, a series of centrifuge tests was conducted to investigate the effects of embankments resting on ground surfaces on the pressure on the rigid vertical walls. In the tests, earth pressures on the rigid walls were successfully measured with built-in earth pressure cells with small accelerometers attached on them. The earth pressure cells are capable of measuring both normal and shear stresses simultaneously with a good accuracy. It appears that dynamic component of the earth pressure of liquefied sand is in proportion to the acceleration of the rigid wall irrespective of amplitude and frequency of the input motion, and increases with increasing average embankment load. On the other hand, the residual component of the earth pressure is found to be well estimated from FEM assuming the liquefied soil as an incompressible elastic body. A practical formula of the earth pressures is established for the purpose of practical use.Another series of centrifuge tests was carried out on models with solidification or densification zones below embankment toes as a remedial countermeasure against liquefaction-induced embankment failure. It was found that the proposed formulae holds valid independently of the movement of walls as long as the liquefied soil behaves as a heavy fluid, and the countermeasure does not soften significantly.  相似文献   

4.
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls.Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks.These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs.Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored,their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed.As a consequence,nonstructural elements,as for wall enclosures,are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements,however they do not specifically indicate how to prevent collapse and severe cracking,and how to enhance the overall stability in the case of moderate to high seismic loading.Furthermore,a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.  相似文献   

5.
The paper focuses on the seismic response of walls in dual (frame + wall) structures, with particular emphasis on shear behaviour. Although dual structures are widely used in earthquake-resistant medium-rise and high-rise buildings, the provisions of modern seismic codes regarding design of walls for shear are not fully satisfactory, particularly in the (common) case that walls of substantially different length form part of the same structure. Relevant provisions of the leading seismic codes are first summarised and their limitations discussed. Then an extensive parametric study is presented, involving two multistorey dual systems, one with identical walls, and one with walls with unequal length, designed to the provisions of Eurocode 8 for two different ductility classes (H and M). The walls of the same structures are also designed to other methods such as those used in New Zealand and Greece. The resulting different designs are then assessed by subjecting the structures to a suite of strong ground motions, carrying out inelastic time history analysis, and comparing the results against design action effects. It is found that although modern code procedures generally lead to satisfactory performance (differences among them do exist), the design of walls seems to be less appropriate in the case of unequal length walls. For this case a modified procedure is proposed, consisting of an additional factor to account for the relative contribution of walls of the same length to the total base and an improved envelope of wall shears along the height; this improved method seems to work better than the other procedures evaluated herein, but further calibration is clearly required.  相似文献   

6.
This paper aims to shed some further light on the seismic behaviour and design of reinforced concrete (R/C) walls which form part of dual (frame + wall) structures. The significance of post‐elastic dynamic effects is recognized by most seismic codes in the definition of the design action effects on walls, i.e. bending moments and shear forces. However, the resulting envelopes are not always fully satisfactory, particularly in the case of medium‐to‐high‐rise buildings. The relevant provisions of modern seismic codes are first summarized and their limitations discussed. Then an extensive parametric study is presented which involves typical multi‐storey dual systems that include walls with unequal lengths, designed according to the provisions of Eurocode 8 for two different ductility classes (M and H) and two effective peak ground acceleration levels (0.16 and 0.24g). The walls of these structures are also designed according to other methods, such as those used in New Zealand and Greece. The resulting different designs are then assessed by subjecting the structures to a suite of records from strong ground motions, carrying out inelastic time history analysis, and comparing the results with the design action effects. It is found that for (at least) the design earthquake intensity, the first two modes of vibration suffice for describing the seismic response of the walls. The bending moment envelope, as well as the base shear of each wall, is found to be strongly dependent on the second mode effect. As far as the code‐prescribed design action effects are concerned, only the NZ Code was found to be consistently conservative, whereas this was not always the case with EC8. A new method is then proposed which focuses on quantifying in a simple way the second mode effects in the inelastic response of the walls. This procedure seems to work better than the others evaluated herein. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
建筑楼梯在2008年汶川大地震中的震害分析   总被引:1,自引:0,他引:1  
2008年汶川大地震中,不l同结构类型建筑的楼梯发生了不同程度的破坏,其中框架结构的楼梯破坏最严重.文中分析了砌体结构、框架结构、框剪结构的楼梯破坏原因.表明楼梯实际上参与了主体结构抗震,在整体结构中起着斜撑的作用,为限制结构层间位移作出了贡献,与目前的结构分析软件不考虑楼梯参与主体抗震作用,仅将其作为荷载加到主体结构...  相似文献   

8.
Accurate estimates of ductility demands on buckling-restrained braced frames (BRBFs) are crucial to performance-based design of BRBFs. An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center, Lehigh University to prepare for an upcoming experimental program. The analysis program DRAIN-2DX was used to model a one-bay, four-story prototype BRBF including material and geometric nonlinearities. The bucklingrestrained brace (BRB) model incorporates both isotropic and kinematic hardening. Nonlinear static pushover and timehistory analyses were performed on the prototype BRBF. Performance objectives for the BRBs were defined and uscd to evaluate thc time-history analysis results. Particular emphasis was placed on global ductility demands and ductility demands oa the BRBs. These demands were compared with anticipated ductility capacities. The analysis results, along with results from similar previous studics, are used to evaluate the BRBF design provisions that have been recommended for codification in the United States. Thc results show that BRB maximum ductility demands can be as high as 20 to 25. These demands significantly exceed those anticipated by the BRBF recommended provisions. Results from the static pushover and timehistory analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions.The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5. Modifications to the testing protocol are recommended.  相似文献   

9.
In past years, seismic response of asymmetric structures has been frequently analysed by means of single-storey models, because of their simplicity and low computational cost. However, it is widely believed that use of more realistic multi-storey models is needed in order to investigate effects of some system characteristics (such as overstrength, higher modes of vibration, etc.) that make behaviour of multi-storey schemes different from that of single-storey systems. This paper examines effects of the overstrength in element cross-sections on the seismic behaviour of multi-storey asymmetric buildings. It is shown that in actual buildings this characteristic, which is sometimes very variable both in plan and along the height of the building, may lead to distributions of ductility demands different from those expected according to the results from single-storey models. Consequently, torsional provisions, which aim at reducing ductility demands of single-storey asymmetric systems to those of the corresponding torsionally balanced systems, should be re-checked in light of the behaviour of realistic multi-storey buildings.  相似文献   

10.
Traditionally, seismic torsional provisions have been evaluated based on the assumption that the strength of the lateral load resisting elements can be adjusted without changing their stiffness. There is an important class of elements that a change of their lateral strength implies a corresponding change of stiffness, as exemplified by reinforced concrete flexural walls. This would imply that when torsional provisions are applied to adjust the strengths of these elements, the stiffness distribution, and also the eccentricity of the system, will change. This paper re-evaluates the consequences of applying the torsional provisions of the Uniform Building Code (UBC, 1997) and also the Eurocode (Eurocode 8, 1994) to single mass eccentric systems supported by elements having such characteristics. In conjunction with the results based on the traditional assumption, the effectiveness of the two provisions to mitigate torsional effects is discussed from a broader perspective. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The use of collision shear walls (bumper‐type), acting transversely to the side subject to pounding, as a measure to minimize damage of reinforced concrete buildings in contact, is investigated using 5‐story building models. The buildings were designed according to the Greek anti‐seismic and reinforced concrete design codes. Owing to story height differences potential pounding in case of an earthquake will occur between floor slabs, a case specifically chosen because this is when pounding can turn out to be catastrophic. The investigation is carried out using nonlinear dynamic analyses for a real earthquake motion and also a simplified solution for a triangular dynamic force of short duration, comparable to the forces caused by pounding. For such analyses, nonlinear, prismatic beam–column elements are used and the effects of pounding are expressed in terms of changes in rotational ductility factors of the building elements. The local effects of pounding on the collision shear walls are investigated using a detailed nonlinear finite element model of the shear walls and results are expressed in terms of induced stresses. It is found that pounding will cause instantaneous acceleration pulses in the colliding buildings and will somewhat increase ductility demands in the members of the top floor, but all within tolerable limits. At the same time the collision walls will suffer repairable local damage at the points of contact, but will effectively protect both buildings from collapse, which could occur if columns were in the place of the walls. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
基于2013年4月20日四川芦山MS7.0地震灾区的房屋建筑震害调查资料, 初步分析了这次地震中建筑结构的震害特征. 结合典型建筑结构震害案例, 从抗震概念设计和抗震构造措施的角度对震害机理进行了探讨, 总结了结构抗震设计方面的经验和教训并给出了相关的建议. 分析表明, 农村自建的砖木和土木结构房屋的抗震能力普遍较差; 砖混结构和砌体-框架混合结构的抗震性能需要严格的抗震构造措施给予保证, 包括合理设置钢筋混凝土构造柱和圈梁, 合理设置承重墙的数量以及承重墙上开洞的数量和位置; 由于鞭梢效应造成的突出屋顶的楼梯间和加层的破坏需引起重视.   相似文献   

13.
The accurate evaluation of code torsional provisions for plan-eccentric structures exhibiting inelastic response relies on the adoption of appropriate systems defining both the torsionally balanced (reference) and torsionally unbalanced cases. Whilst a considerable number of analytical studies of this problem have been presented in the literature, inconsistencies have arisen in their conclusions. It is evident from a review of previous studies that one factor contributing significantly to these discrepancies arises in the definition of the structural layout. An issue of particular importance is whether the transverse load-resisting elements oriented perpendicular to the assumed (lateral) direction of earthquake loading should, for purposes of realism, be included in model definitions. Given the diverse approaches in the existing literature, clarification of this issue is required in order to advance the understanding of inelastic torsional response behaviour and to assist the interpretation and comparison of previous studies. This paper aims to provide such clarification, based on analyses of a series of models defined rigorously according to code design provisions. Such models have been subjected to both uni- and bi-directional ground motion input. It is concluded that for the flexible-edge element, accurate estimates of additional ductility demand arising from torsional effects may be obtained from uni-directional models (in which both the transverse elements and the corresponding earthquake component are neglected) only for medium-period to long-period systems. Such estimates may be over-conservative for short-period systems, which constitute a large proportion of systems for which code static torsional provisions are utilized. It is further concluded that models incorporating the transverse elements but analysed under uni-directional lateral loading may underestimate by up to 100% the torsional effects in such systems, but are reasonably accurate for medium- and long-period structures.  相似文献   

14.
基于ETABS的钢筋混凝土框架与楼梯共同工作性能分析   总被引:4,自引:0,他引:4  
本文利用大型结构分析软件ETABS设计了4种包含和不包含楼梯的钢筋混凝土框架计算模型,分别采用底部剪力法、反应谱法和时程分析法对各模型进行了弹性阶段地震反应特性对比计算分析.结果显示:楼梯参与结构整体计算后,结构出现抗侧刚度明显增加、结构扭转振动显著、梯间框架柱剪力突变等现象;建议结构设计时采用包含楼梯的层间结构计算模型(M-4),使用振型分解反应谱法进行结构抗震分析计算.  相似文献   

15.
The inelastic earthquake response of eccentric, multistorey, frame‐type, reinforced concrete buildings is investigated using three‐ and five‐storey models, subjected to a set of 10, two‐component, semi‐artificial motions, generated to match the design spectrum. Buildings designed according to the EC8 as well as the UBC‐97 code were included in the investigation. It is found that contrary to what the simplified one‐storey, typical, shear‐beam models predict, the so‐called ‘flexible’ side frames exhibit higher ductility demands than the ‘stiff’ side frames. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. This investigation constitutes one of the first attempts to study the problem of inelastic torsion by means of realistic, multistorey inelastic building models. Additional studies with similar or even more refined idealizations will certainly be required to arrive at definite results and recommendations for possible code revisions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
For earthquake action the new design provisions of Eurocode 8 are in the process of replacing the European national earthquake codes. The paper treats the design and behaviour of multi-storey structural walls in view of the new provisions. For structural walls the provisions of the Eurocode 8 are compared with those of a national code which it is going to replace. As the national code the current Swiss earthquake standard SIA 160 is chosen. Basic design rules of both codes are introduced and compared by means of examples comprising buildings which are regular in plan and elevation and which use structural walls for lateral resistance. The height of the buildings is varied from a from four to eight storeys. In the example, both the SIA and the Eurocode design provisions are based on the static equivalent force method, and a triangular distribution of the lateral force. However, most other design provisions differ between the two codes. The structures designed are modelled numerically and subjected to non-linear time-history analysis. At first, both the SIA and Eurocode designed structures are subjected to ground motions compatible to the design spectra in the respective codes. Then all structures are subjected to a recorded ground motion. The results are discussed in view of assumptions made at the design phase. Conclusions and recommendations are provided. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
The seismic shear provisions of EC8 for ductile reinforced concrete walls, serving as the lateral load resisting system in multistorey building structures are re-examined. Two aspects are considered (1) single walls, or a system comprising a number of equal-length walls, (2) a resisting system comprising walls of different lengths. It is demonstrated, in light of recent parametric studies, that the EC8 provisions for walls in the medium- and high-ductility classes (DC-M and DC-H, respectively) are both in need of revision. Possible revisions of requirements and a design procedure for a wall system are presented.  相似文献   

18.
This paper examines the distribution of seismic drift demands in multi-storey steel moment frames designed to the provisions of Eurocode 8, with due account of the frequency content of ground motion. After providing an overview of current design rules, selected results from a detailed parametric investigation into inelastic drift demands are presented and discussed. The study includes extensive incremental dynamic analyses covering a wide range of structural characteristics and a large suite of ground motion records. The mean period is adopted in this work as a measure of the frequency content of ground motion. Prediction models for maximum global and inter-storey drift demands are presented and shown to be primarily affected by the fundamental-to-mean period ratio and the behaviour factor. Particular attention is given in this paper to the influence of the relative storey stiffness ratio on the distribution of drift demands over the height of the structure. In order to achieve a comparatively uniform drift distribution, a target relative storey stiffness ratio, incorporating the structural and ground motion characteristics, is proposed for design purposes. Finally, the implications of the findings on typical design procedures are highlighted, and possible improvements in codified guidance are discussed.  相似文献   

19.
This paper presents evidence that the extension of conclusions based on the widely used simplified, one story, eccentric systems of the shear‐beam type, to actual, nonsymmetric buildings and consequent assessments of the pertinent code provisions, can be quite erroneous, unless special care is taken to match the basic properties of the simplified models to those of the real buildings. The evidence comes from comparisons of results obtained using three variants of simplified models, with results from the inelastic dynamic response of three‐ and five‐story eccentric buildings computed with detailed MDOF systems, where the members are idealized with the well‐known plastic hinge model. In addition, a convincing answer is provided on a pertinent hanging controversy: For frame‐type buildings, designed in accordance with the dynamic provisions of modern codes (such as EC8 or IBC2000), which allow reduced shears at the stiff edge due to torsion, the frames at the flexible sides are the critical elements in terms of ductility demands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The static design requirements of some seismic codes, such as the Eurocode 8 and—in most cases—the Uniform Building Code, to allow for the effects of earthquake excitation acting in a direction other than the principal axes of the structure do not apply to one-way asymmetric systems. Therefore, with some exceptions, no specific provisions are considered for such systems to cover effects of structural asymmetry on the behaviour of elements located along the symmetric system direction. Aimed towards fulfilling this need, in this paper, a wide parametric study of the inelastic response of one-way asymmetric systems designed according to Uniform Building Code is carried out, considering two-component earthquake excitations. The analyses show that the maximum ductility demands on elements aligned along the asymmetric system direction are very close to, and even lower than, those obtained for symmetric reference systems. Conversely, the symmetric direction elements undergo significantly larger inelasticity than if they were located in symmetric reference systems. Subsequently, the overstrength needed by the symmetric direction elements to prevent such additional ductility demands for several stiffness and plan configurations is quantified. It is concluded that one-way asymmetry should be considered by seismic codes as an intrinsic system property, thus implying that specific provisions should be included for designing elements located along the symmetric system direction, in addition to those currently subscribed to design the asymmetric direction elements. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号