首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
旱情遥感监测研究进展与应用案例分析   总被引:3,自引:2,他引:1  
在大范围、长时序的旱情监测中,遥感技术以其快速、经济和大空间范围获取的特点,弥补了基于台站气象数据旱情监测的不足,为防旱和抗旱决策提供了实时、动态、宏观的辅助决策数据。本文对已有旱情遥感监测方法进行分析和整理,将其总结为基于土壤热惯量、基于土壤波谱特征、基于蒸散模型和基于植被指数的旱情监测方法,并对各类方法从监测原理、适用范围和应用进展等方面进行了阐述。在此基础之上,详细介绍一种结合了全球植被水分指数和短波角度归一化指数的优势建立的旱情遥感监测模型和方法。以2010年春季西南地区旱情为应用案例,从监测模型方法、数据处理流程和应用分析等方面,介绍一种基于植被水分指数的旱情监测方法,并对其监测结果进行统计分析与评价。  相似文献   

2.
利用2015—2020年金沙江流域MODIS数据和流域内29个气象站1991—2020年月降水、气温资料,研究不同遥感干旱指数在金沙江流域的适用性,这些指数包括温度状态指数(temperature condition index, TCI)、温度植被干旱指数(temperature vegetation dryness index, TVDI)、植被状态指数(vegetation condition index, VCI)、植被供水指数(vegetation supply water index, VSWI)和标准化降水蒸散指数(standardized precipitation evapotranspiration index, SPEI)。结果表明:TCI与TVDI、VSWI与TCI、VSWI与TVDI、VSWI与VCI各月的相关性均较为显著。TVDI与SPEI和TCI与SPEI全年相关性较好。SPEI与VSWI相关性在1月、10月较低,其余月份均相关性较好。SPEI与VCI在1—3月相关性较低,其余月份均相关性较好。根据4种遥感干旱指数与SPEI的相关性分析,建议金沙江上游地区...  相似文献   

3.
以辽西北为研究区域,选取典型干旱年2009年作物(春玉米)主要生长季,采用表观热惯量(apparent thermal inertia,ATI)、距平植被指数(anomalies of vegetation index,AVI)和植被供水指数(vegetation supply water index,VSWI)3种基于不同理论的遥感干旱指数方法对土壤水分进行反演,分析其监测效果。结果表明,3种指数分别在一定程度上反映出了辽西北地区2009年的旱情趋势,但得到的反演结果并不一致;ATI在中高植被覆盖率下的监测效果高于预期结果,比较符合历史气象资料;AVI可以有效反映当年作物主要生长季各时期相对的受旱状况;VSWI夸大了植被的影响作用,存在严重的滞后性。  相似文献   

4.
基于遥感技术的河南省农业旱情监测研究   总被引:1,自引:0,他引:1  
干旱的发生不仅影响农业生产,还极大地破坏了生态环境。遥感技术宏观、客观、迅速和廉价的优势及其近年来的飞速发展,为旱情监测开辟了一条新途径。利用RS、GIS、GPS技术,使用MODIS卫星的归一化植被指数( NDVI)数据、地表温度( LST)数据和水文气象数据,结合当前旱情监测模型,以植被指数和地表温度为依托,建立了适合河南省的农业旱情遥感监测模型。  相似文献   

5.
叶面积指数LAI (Leaf Area Index)是表征植被生长状态的一个重要的冠层结构参数。MODIS LAI产品是全球常用的遥感LAI产品之一。然而,由于地表异质性、数据质量、模型精度等多方面的差异,MODIS LAI产品质量各有不同。基于无线传感器网络的LAINet仪器可以自动获取时间频率更密集的LAI实测数据,为验证卫星遥感LAI产品质量提供了有力支持。本文基于2018年和2019年黑河中游时间序列地面实测LAI数据与高空间分辨率卫星遥感植被指数数据,建立经验回归模型。将该模型反演高空间分辨率卫星遥感LAI作为参考LAI真值,对MODIS LAI产品进行了精度验证与稳定性评价,分析了MODIS LAI与LAINet地面测量的差异原因。结果表明:与Landsat 8参考真值相比,MODIS LAI生长季的质量(RMSE2018=1.17,RMSE2019=1.14)优于衰落季(RMSE2018=1.39,RMSE2019=1.84),MODIS LAI总体低估,尤其是生长季后期。时间序列上,MODIS LAI产品能够刻画植被生长和凋落的季节特征,但生长前期波动性要强于后期。与L...  相似文献   

6.
基于MODIS的区域动态干旱监测方法   总被引:1,自引:0,他引:1  
以辽宁省2009年夏季的干旱情况为例,利用多时相、多光谱的MODIS数据信息,结合地面实测气象信息与水文信息对旱情监测进行了研究,根据具体区域的实际情况,动态选择遥感指数及模型参数,实现了利用遥感数据对大范围区域的动态干旱监测。  相似文献   

7.
土壤湿度是农作物在生长过程中主要供水因子,实际测量土壤湿度较为复杂,卫星遥感成为反演和监测土壤湿度的重要手段。本文利用商丘地区2012和2013年MODIS数据,采用滤波方法减小云、气溶胶影响下的MODIS产品噪声,利用农田浅层土壤湿度指数(CSMI)与实测土壤相对湿度值进行了相关性分析,构建了适用于商丘地区的土壤湿度模型,并利用2013年的土壤实测数据对模型反演出来的土壤湿度进行了验证。结果表明,CSMI指数能够有效反演该地区0~50 cm深的土壤湿度值(通过了0.01的显著性检验)。  相似文献   

8.
广东省农业旱灾遥感监测   总被引:2,自引:0,他引:2  
研究了基于遥感与GIS的广东省农业旱灾遥感监测方法,建立了农业旱情遥感监测评估模型。该模型结合MODIS遥感数据、地面气象观测资料以及当地基础地理信息系统数据,分析评价了2006年5~10月广东省每旬的农业旱情发展变化过程,结果与2006年广东农业旱情发展变化趋势吻合程度很好,表明这一监测方法能够用来有效地监测评价广东省农业旱情发展时空变化。  相似文献   

9.
墒情遥感监测指数对比分析与灌区应用研究   总被引:1,自引:0,他引:1  
以人民胜利渠灌区为研究区,在小麦拔节至成熟期利用MODIS数据逐旬构建PDI、VCI、VSWI和TVDI墒情遥感监测指数,与实测土壤含水量数据进行相关性分析,对比筛选适用于灌区的监测指数,并基于HJ卫星数据将最优指数应用于人民胜利渠灌区土壤墒情监测。结果表明:小麦拔节至成熟期,TVDI指数与实测土壤含水量的相关性最好,表现最为稳定,更适用于灌区土壤墒情监测;基于HJ卫星数据的TVDI土壤墒情监测模型能够快速有效地实现灌区土壤墒情遥感监测。  相似文献   

10.
以江苏省淮北地区作为研究区,利用MODIS遥感数据,选择温度植被干旱指数对研究区进行干旱监测对比分析,建立基于温度植被干旱指数的研究区干旱遥感监测模型;结合土壤含水量数据和降雨量数据,确定研究区的干旱等级划分标准;利用干旱遥感模型对2011年夏旱进行监测研究。结果表明,建立干旱遥感监测模型对研究区干旱研究有很好的适用性和推广性。  相似文献   

11.
遥感技术具备实时快速、时空连续、广覆盖尺度等独特优势,在全球气候恶化大背景下,利用遥感干旱监测方法相比于传统地面监测手段,能够提供实时、准确、稳定的旱情信息,辅助科学决策。目前常用遥感旱情监测方法大多依赖全域性数学模型建模,假定了旱情模式的空间平稳特性,因而难以准确反映旱情模式的局部差异特征。本文提出利用地理加权回归模型GWR (Geographically Weighted Regression),考虑旱情模式的空间非平稳特性,综合多种遥感地面旱情监测指数,以实现传统全域旱情监测模型的局部优化。以美国大陆为研究区,监测2002年—2011年共10年的旱情状态。研究表明,GWR模型能够提供空间变化的局部最佳估计模型参数,监测结果更加吻合标准美国旱情监测USDM (U.S Drought Monitor)验证数据,且与地面实测值的最高相关系数R达到0.8552,均方根误差RMSE达到0.972,显著优于其他遥感旱情监测模型。GWR模型具备空间非平稳探测优势,实现了旱情模式的局部精细探测,能够显著提升遥感旱情监测精度,具备较好的应用前景。  相似文献   

12.
全国干旱遥感监测运行系统的研制   总被引:11,自引:2,他引:11  
该研究利用1981-1994的NOAA AVHRR 8km分辨率的NDVI资料,以及对应时段全国102个固定农业观测站的20cm深的土壤湿度资料,建立了植被状态指数(VCI)与土壤湿度之间的统计模型,由土壤湿度旱情等级标准来换算出每旬用VCI进行干旱监测的旱情等级标准,以确定出全国的旬旱情分布状况,在此工作的基础上建成了“全国干旱遥感则运行系统”,该运行系统使遥感手段监测全国干旱成为可能,将能提供每年3-9月每旬全国的干旱监测情况,为国家有关决策部门提供干旱减灾的决策依据。  相似文献   

13.
随着卫星遥感技术在海洋监测中的作用日益凸显,为了加快地方海洋监测能力建设,构建省级卫星遥感海洋应用平台十分必要。介绍了河北省卫星遥感海洋应用平台的总体设计思路、总体架构、系统建设和应用情况。该平台将国家遥感数据分发单位、地方业务化监测单位、现场观测单位有机联合在一起,形成了自卫星遥感数据与现场观测数据的收集、数据处理、产品生产、数据管理、成果发布至精度评价的全业务闭环流程,实现了海洋环境常规监测业务系统后台全自动化运行,极大程度地提升了河北省海洋遥感监测能力和服务能力,为地方海洋遥感监测平台的建设提供参考。  相似文献   

14.
土壤湿度微波遥感监测研究进展   总被引:1,自引:0,他引:1  
土壤湿度是农业生产的重要影响因子,获取土壤湿度信息以制定人工干预调节措施是稳固生产的重要保证,实时、有效地监测土壤墒情显得尤为重要。利用遥感数据反演土壤湿度有多种方法,微波遥感法被认为是目前最佳的监测方法。本文总结了被动、主动微波土壤湿度遥感监测的主要模型、方法及其优缺点和适用范围,分析了雷达遥感监测土壤湿度的最优参数选取等,展望了微波遥感监测土壤湿度的应用前景,以期为土壤湿度微波遥感监测研究提供参考和借鉴。  相似文献   

15.
近年来,SOLAP技术已逐渐应用于遥感多维分析研究领域,但其计算性能仍面临大规模数据的挑战。本文借鉴数据密集型计算模式Map-Reduce在OLAP领域的相关应用研究,提出一种基于该模式扩展的遥感数据SOLAP立方体模型。在数据分级分块基础上,对现有模型在分布式环境下进行了适应性改进,并在Map-Reduce支持下,通过引入多维地图代数将该模型中的SOLAP计算转化为基于栅格块粒度的并行地图代数操作。以遥感旱情应用为例阐述了模型的构建与应用过程,并实现了原型。实验结果证明了该模型在大规模数据处理情况下具有较好加速性能与可扩展性。  相似文献   

16.
李燕  陈莹  董秀兰  闫琰 《东北测绘》2012,(2):156-158
随着遥感技术的发展,将会有更多不同时间、空间分辨率的遥感图像数据应用于各个领域的工程中,遥感图像的模式识别便成为当前遥感图像应用研究领域中一个很重要的研究方向。人工神经网络(Artificial Network Networks,ANN)是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。基于神经网络的遥感图像识别是遥感图像处理领域这几年的研究重点。本文首先介绍了人工神经网络和模式识别算法的基本理论知识,然后利用人工神经网络在Matlab工具箱环境中进行高空间分辨率的遥感图像识别。  相似文献   

17.
微波植被指数在干旱监测中的应用   总被引:3,自引:0,他引:3  
在植被覆盖区域,归一化植被指数(NDVI)被广泛地应用于干旱遥感监测。和基于光学遥感的植被指数相比,Shi等提出的微波植被指数MVI(Microwave Vegetation Index)被证实能够反映更多的植被生长信息。本文以MVI为基础,利用MVI代替目前比较成熟的温度植被指数TVDI(Temperature Vegetation Index)中的NDVI,构建温度微波植被干旱指数TMVDI(Temperature Microwave Vegetation Index),发展了一种新的干旱监测方法。本文以2006年夏季四川省发生的百年难遇的干旱为研究对象,将基于TMVDI与TVDI的干旱监测结果进行了对比分析。最后,为评估监测结果的准确性,将遥感监测的结果与基于气象站点降雨观测数据构建的标准降雨指数SPI(Standardized Precipitation Index)的计算结果进行了对比分析。结果表明,利用低频降轨微波辐射计数据计算的T MVDI最适合于进行植被覆盖区域的干旱监测。  相似文献   

18.
基于国产卫星影像的自然资源动态监测   总被引:1,自引:0,他引:1  
林晓萍 《测绘通报》2020,(11):28-32
准确及时地掌握山、水、林、田、湖、草系统变化状况,是自然资源管理重点关注的问题。卫星遥感技术具有宏观、综合、动态、快速的特点,能够应用于自然资源领域开展目标识别、信息采集与处理、分析与评估等工作,可作为自然资源监测的有效手段。本文以“土地、矿产、海洋”等重要自然资源要素为动态监测研究目标,基于多源多时相国产卫星遥感影像数据和各类审批、规划专题资料数据,开展自然资源动态监测研究。研究结果表明,深入挖掘国产卫星影像资源潜力,实现自然资源精细遥感监测服务模式是切实可行与高效的。  相似文献   

19.
本文详细介绍了我们研制的微机遥感图像应用处理系统。它的硬件部分以四台微机为主,采用分布式联接,组成四个子系统,可供1—4人同时操作,能方便地输入输出多种数据和图像。该系统的软件部分,由对应硬件子系统的四个软件包组成,即磁带机数据采集软件包,图像显示软件包,专题制图软件包及遥感应用处理软件包。作为重点的第四部分软件,是在遥感应用工作者的经验和工作方法的基础上设计的,它收集和综合了各种实用处理方法,比通用的图像处理软件包更具有遥感应用的特色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号