首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Erosion due to waves is an important and actual problem for most coastal areas of the North Sea. The objective of this study was to estimate the impact of wave action on the coastline of Sylt Island. From a 2-year time series (November 1999 to October 2001) of hydrological and wave parameters generated with a coupled wave–current modelling system, a period comprising storm ‘Anatol’ (3–4 December 1999) is used to investigate the effects of waves on currents and water levels and the input of wave energy into the coastline. The wave-induced stress causes an increase of the current velocity of 1 m/s over sand and an additional drift along the coast of about 20 cm/s. This produces a water level increase of more than 20 cm in parts of the tidal basin. The model system also calculates the wave energy input into the coastline. Scenario runs for December 1999 with a water level increase of 50 cm and wind velocity increased by 10% show that the input of the wave energy into the west coast of Sylt Island increases by 30% compared to present conditions. With regard to the forecasted near-future (Woth et al., Ocean Dyn 56:3–15, 2006) increase of strong storm surges, the scenario results indicate an increased risk of coastal erosion in the surf zone of Sylt Island.  相似文献   

2.
The 1953 North Sea floods, the Big Flood, was one of the worst natural disasters in Europe in modern times and is probably one of the most studied severe coastal floods. Several factors led to the devastating storm surge along the southern North Sea coast in combination of strong and sustained northerly winds, invert barometric effect, high spring tide, and an accumulation of the large surge in the Strait of Dover. However, the storm waves and their roles during the 1953 North Sea storm surge are not well investigated. Therefore, the effect of wave setup due to breaking waves in the storm surge processes is investigated through numerical experiments. A coupled process-based tide-wave-surge model was used to investigate and simulate the storm surge in the North Sea during January 31–February 1, 1953 and validated by comparing with historical water level records at tide gauges and wave observations at light vessels in the North Sea. Meteorological forcing inputs for the period, January 27–February 3, 1953 are reproduced from ERA-20C reanalysis data with a constant correction factor for winds. From the simulation results, it is found that, in addition to the high water due to wind setup, wave setup due to breaking waves nearshore play a role of approximately 10% of the storm surge peaks with approximately 0.2 m. The resulting modeling system can be used extensively for the preparedness of the storm surge and wave of extreme condition, and usual barotropic forecast.  相似文献   

3.
Suspended particulate matter (SPM) fluxes and dynamics are investigated in the East Frisian Wadden Sea using a coupled modeling system based on a hydrodynamical model [the General Estuarine Transport Model (GETM)], a third-generation wave model [Simulating Waves Nearshore (SWAN)], and a SPM module attached to GETM. Sedimentological observations document that, over longer time periods, finer sediment fractions disappear from the Wadden Sea Region. In order to understand this phenomenon, a series of numerical scenarios were formulated to discriminate possible influences such as tidal currents, wind-enhanced currents, and wind-generated surface waves. Starting with a simple tidal forcing, the considered scenarios are designed to increase the realism step by step to include moderate and strong winds and waves and, finally, to encompass the full effects of one of the strongest storm surges affecting the region in the last hundred years (Storm Britta in November 2006). The results presented here indicate that moderate weather conditions with wind speeds up to 7.5 m/s and small waves lead to a net import of SPM into the East Frisian Wadden Sea. Waves play only a negligible role during these conditions. However, for stronger wind conditions with speeds above 13 m/s, wind-generated surface waves have a significant impact on SPM dynamics. Under storm conditions, the numerical results demonstrate that sediments are eroded in front of the barrier islands by enhanced wave action and are transported into the back-barrier basins by the currents. Furthermore, sediment erosion due to waves is significantly enhanced on the tidal flats. Finally, fine sediments are flushed out of the tidal basins due to the combined effect of strong erosion by wind-generated waves and a longer residence time in the water column because of their smaller settling velocities compared to coarser sediments.
Karsten A. LettmannEmail:
  相似文献   

4.
The transition zone separating estuarine environments from the coastal ocean is characterized not only by distinctive morphological and sedimentary trends but by unique hydrodynamic forces as well. Lower Chesapeake Bay, a large coastal estuary within the Mid-Atlantic Bight of the U.S. East Coast, experiences complex wave and current-induced forces produced during winter storms. Wave and current measurements made near Thimble Shoal Light over five winter seasons show that most storms simultaneously produce both ocean and bay-generated wave trains that appear as distinct bimodal peaks in directional spectra. Analysis of selected storm wave records reveal that lower-frequency ocean waves, although nominally lower in amplitude than higher-frequency bay waves, are roughly equivalent to bay waves in terms of energy expended on beds of fine- to medium-grained sand at either end of the Thimble Shoal Channel. Grain-friction energy dissipation estimates calculated for waves and currents suggest that waves provide more net energy capable of transporting bottom sediment than currents, although strong barotropic flows briefly encountered during a major storm on 13–14 March 1993, exceeded wave energy expended at the bed by almost an order of magnitude. From analyses of wave orbital velocity spectra, it is shown that dual wave trains characterized by differences in peak frequency and direction may assist each other through interactions that increase their combined contribution to frictional energy dissipation and inferred sediment transport at the bed.  相似文献   

5.
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25–27 October 2013), and about a month later, the storm Xaver (5–7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20–30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.  相似文献   

6.
《Continental Shelf Research》2005,25(9):1023-1042
Four bottom-mounted current profilers were deployed across the Taiwan Strait from September 28 to December 14 of 1999 to monitor the current velocity when the northeast monsoon was strong. Results indicate both diurnal and semidiurnal tidal currents were primarily barotropic. The barotropic diurnal tide might be explained by a single Kelvin wave propagating along the Mainland China coast from north to south. However, the barotropic semidiurnal tide manifested as a more complicated form in the Taiwan Strait.The subtidal current generally fluctuated with the northeast winds. When the northeast wind was weak, the along- and cross-strait subtidal current flowed primarily against the wind and toward Taiwan, respectively. As the northeast wind intensified, the along-strait current flowed downwind, brought the cold China coastal water southward, and formed a baroclinic velocity front in the western portion of the Taiwan Strait. The Ekman effect forced the cross-strait current toward Mainland China in the upper water column and toward Taiwan in the lower water column, respectively. The along-strait volume transport, estimated from interpolated current velocity, varied from −5 to 2 Sv with a mean value of 0.12±0.33 Sv. Similar transport was also estimated from the sea level difference across the Taiwan Strait.Although the local wind played a dominant role for the fluctuations of current velocity and transport in the Taiwan Strait, it could be not the only important factor. The current or transport directed frequently against the wind could be related to the northward current, which was consistently observed in the Penghu Channel.  相似文献   

7.
The coastal zones are facing the prospect of changing storm surge statistics due to anthropogenic climate change. In the present study, we examine these prospects for the North Sea based on numerical modelling. The main tool is the barotropic tide-surge model TRIMGEO (Tidal Residual and Intertidal Mudflat Model) to derive storm surge climate and extremes from atmospheric conditions. The analysis is carried out by using an ensemble of four 30-year atmospheric regional simulations under present-day and possible future-enhanced greenhouse gas conditions. The atmospheric regional simulations were prepared within the EU project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). The research strategy of PRUDENCE is to compare simulations of different regional models driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100 were prepared by the Hadley Center based on the IPCC A2 SRES scenario. The results suggest that under future climatic conditions, storm surge extremes may increase along the North Sea coast towards the end of this century. Based on a comparison between the results of the different ensemble members as well as on the variability estimated from a high-resolution storm surge reconstruction of the recent decades it is found that this increase is significantly different from zero at the 95% confidence level for most of the North Sea coast. An exception represents the East coast of the UK which is not affected by this increase of storm surge extremes.  相似文献   

8.
Two prognostic experiments taking into account real atmospheric forcing for 2006 and 2011 were carried out based on the eddy-resolving numerical model with a horizontal resolution of 1.6 km for the Black Sea. The main dynamic features such as the Rim Current, the Sevastopol, and Batumi anticyclones are reproduced in both experiments. The model results are confirmed via observation data. We accomplished the analysis of simulated circulation and energetics. The results demonstrate that both the vertical viscosity and vertical diffusion along with the energy inflow from the wind have been the main contributors to the annual and seasonal budgets of kinetic and potential energies of the Black Sea circulation. It is shown that two regimes of the Black Sea general circulation are implemented depending on a magnitude of wind contribution to the kinetic energy in winter. Intensive mesoscale eddy formation was observed along the Anatolian, Caucasian, and Crimean coasts. The analysis of the Black Sea circulation and eddy energetics allowed us to conclude that the generation and development of the mesoscale coastal eddies is associated with the barotropic instability in case of intensive coastal currents and is associated with both the barotropic and baroclinic instability in case of weak coastal currents.  相似文献   

9.
A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (∼10 m s−1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.  相似文献   

10.
The structures and evolution of the coastal-trapped waves (CTW) along the northern coast of the South China Sea (SCS) in the year?1990 are studied using observed hourly sea level records collected from four sites around the northern SCS and a three-dimensional numerical model with realistic bathymetry and wind forcing. Analysis of the yearlong records of the observed sea level data indicates that the sea level variations are highly correlated between the stations and the sea level variability propagates southwestward along the coast. The sea level signals traveling from northeast to southwest along the coast with a propagation speed of 5.5–17.9?m?s?1 during both the typhoon season and the winter month show the characteristics of a CTW. The wave speed is faster between stations Shanwei and Zhapo than that between Xiamen and Shanwei. Sea level variations during both typhoon season and winter month are reasonably well represented by the numerical model. The model runs focused on the wave signals related to typhoons and winter storm show that the CTW propagating southwestward along the coast can be reinforced or decreased by the local wind forcing during its propagation and there are apparent differences in the propagation characteristics between the waves along the mainland and those traveling around Hainan Island. The abrupt change of the shelf width and coastline around Leizhou Peninsula and Hainan Island are responsible for strong scattering of CTWs from one mode into higher modes. The alongshore velocities across different transects associated with CTW are investigated to examine the vertical structures of the waves. The alongshore velocity structures at transects during different events are related to the combined effect of stratification and shelf profile, which can be estimated using the Burger number. The empirical orthogonal function analysis of alongshore velocity and nodal lines of the mode structure suggest mode two CTWs in transect S2 during typhoon season and mode 1 CTWs during winter. Sensitivity model experiments are also performed to demonstrate the effects of local wind and topography on the wave propagation.  相似文献   

11.
The impact of the gustiness on surface waves under storm conditions is investigated with focus on the appearance of wave groups with extreme high amplitude and wavelength in the North Sea. During many storms characterized by extremely high individual waves measured near the German coast, especially in cold air outbreaks, the moving atmospheric open cells are observed by optical and radar satellites. According to measurements, the footprint of the cell produces a local increase in the wind field at sea surface, moving as a consistent system with a propagation speed near to swell wave-traveling speed. The optical and microwave satellite data are used to connect mesoscale atmospheric turbulences and the extreme waves measured. The parameters of open cells observed are used for numerical spectral wave modeling. The North Sea with horizontal resolution of 2.5?km and with focus on the German Bight was simulated. The wind field “storm in storm,” including moving organized mesoscale eddies with increased wind speed, was generated. To take into account the rapid moving gust structure, the input wind field was updated each 5?min. The test cases idealized with one, two, and four open individual cells and, respectively, with groups of open cells, with and without preexisting sea state, as well the real storm conditions, are simulated. The model results confirm that an individual-moving open cell can cause the local significant wave height increase in order of meters within the cell area and especially in a narrow area of 1–2?km at the footprint center of a cell (the cell's diameter is 40–90?km). In a case of a traveling individual open cell with 15?m·s?1 over a sea surface with a preexisting wind sea of and swell, a local significant wave height increase of 3.5?m is produced. A group of cells for a real storm condition produces a local increase of significant wave height of more than 6?m during a short time window of 10–20?min (cell passing). The sea surface simulation from modeled wave spectra points out the appearance of wave groups including extreme individual waves with a period of about 25?s and a wavelength of more than 350?m under the cell's footprint. This corresponds well with measurement of a rogue wave group with length of about 400?m and a period of near 25?s. This has been registered at FiNO-1 research platform in the North Sea during Britta storm on November 1, 2006 at 04:00 UTC. The results can explain the appearance of rogue waves in the German Bight and can be used for ship safety and coastal protection. Presently, the considered mesoscale gustiness cannot be incorporated in present operational wave forecasting systems, since it needs an update of the wind field at spatial and temporal scales, which is still not available for such applications. However, the scenario simulations for cell structures with appropriate travel speed, observed by optical and radar satellites, can be done and applied for warning messages.  相似文献   

12.
The Darss–Zingst peninsula at the southern Baltic Sea is a typical wave-dominated barrier island system which includes an outer barrier island and an inner lagoon. The formation of the Darss–Zingst peninsula dates back to the Littorina Transgression onset about 8,000 cal BP. It originated from several discrete islands, has been reshaped by littoral currents, wind-induced waves during the last 8,000 years and evolved into a complex barrier island system as today; thus, it may serve as an example to study the coastal evolution under long-term climate change. A methodology for developing a long-term (decadal-to-centennial) process-based morphodynamic model for the southern Baltic coastal environment is presented here. The methodology consists of two main components: (1) a preliminary analysis of the key processes driving the morphological evolution of the study area based on statistical analysis of meteorological data and sensitivity studies; (2) a multi-scale high-resolution process-based model. The process-based model is structured into eight main modules. The two-dimensional vertically integrated circulation module, the wave module, the bottom boundary layer module, the sediment transport module, the cliff erosion module and the nearshore storm module are real-time calculation modules which aim at solving the short-term processes. A bathymetry update module and a long-term control function set, in which the ‘reduction’ concepts and technique for morphological update acceleration are implemented, are integrated to up-scale the effects of short-term processes to a decadal-to-centennial scale. A series of multi-scale modelling strategies are implemented in the application of the model to the research area. Successful hindcast of the coastline change of the Darss–Zingst peninsula for the last 300 years validates the modelling methodology. Model results indicate that the coastline change of the Darss–Zingst peninsula is dominated by mechanisms acting on different time scales. The coastlines of Darss and the island of Hiddensee are mainly reshaped by long-term effects of waves and longshore currents, while the coastline change of the Zingst peninsula is due to a combination of long-term effects of waves and short-term effects caused by wind storms.  相似文献   

13.
The storm surge period of 13–16 November 1977 when there was a major positive surge followed by a negative surge in the Irish Sea is investigated using a two-dimensional unstructured mesh model of the west coast of Britain. The model accounts for tidal and external surge forcing across its open boundaries which are situated in the Celtic Sea and off the west coast of Scotland. Although this period has been examined previously using a uniform finite-difference model, and a finite element model, neither of these could resolve the Mersey estuary which is the focus of the present study. By using a finite element model with very high mesh resolution within the Mersey, the spatial variability of surge elevations and currents within the Mersey to rapidly changing surge dynamics can be examined. The mesh in the model varies from about 7 km in deep water, to the order of 100 m in the Mersey, with the largest mesh length reaching 17 km in deep offshore regions, and smallest of order 26 m occurring in shallow coastal regions of the Mersey estuary. The model accounts for wetting/drying which occurs in shallow water coastal areas. Calculations showed that during the positive surge period, the amplitude and speed of propagation of the surge was largest in the deep water channels. This gave rise to significant spatial variability of surge elevations and currents within the estuary. As wind stresses decreased over the Irish Sea, a negative surge occurred over Liverpool Bay and at the entrance to the Mersey. However, within the Mersey there was a local positive surge which continued to propagate down the estuary. This clearly showed that although the large scale response of the Irish Sea to changing wind fields occurred rapidly, the response in the Mersey was much slower. These calculations with a west coast variable mesh model that included a high-resolution representation of the Mersey revealed for the first time how elevations and currents within the Mersey responded to Irish Sea surges that rapidly changed from positive to negative.  相似文献   

14.
The effects of wave–current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave–current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209–1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave–surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave–current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave–current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.  相似文献   

15.
Typhoon Nuri formed on 18 August 2008 in the western North Pacific east of the Philippines and traversed northwestward over the Kuroshio in the Luzon Strait where it intensified to a category 3 typhoon. The storm weakened as it passed over South China Sea (SCS) and made landfall in Hong Kong as a category 1 typhoon on 22 August. Despite the storm’s modest strength, the change in typhoon Nuri’s intensity was unique in that it strongly depended on the upper ocean. This study examines the ocean response to typhoon Nuri using the Princeton Ocean Model. An ocean state accounting for the sea-surface temperature (SST) and mesoscale eddy field prior to Nuri was constructed by assimilating satellite SST and altimetry data 12 days before the storm. The simulation then continued without further data assimilation, so that the ocean response to the strong wind can be used to understand processes. It is found that the SST cooling was biased to the right of the storm’s track due to inertial currents that rotated in the same sense as the wind vector, as has previously been found in the literature. However, despite the comparable wind speeds while the storm was in western Pacific and SCS, the SST cooling was much more intense in SCS. The reason was because in SCS, the surface layer was thinner, the vorticity field of the Kuroshio was cyclonic, and moreover a combination of larger Coriolis frequency as the storm moved northward and the typhoon’s slower translational speed produced a stronger resonance between wind and current, resulting in strong shears and entrainment of cool subsurface waters in the upper ocean.  相似文献   

16.
A high-resolution numerical model system is essential to resolve multi-scale coastal ocean dynamics. So a multi-scale unstructured grid-based finite-volume coastal ocean model (FVCOM) system has been established for the East China Sea and Changjiang Estuary (ECS–CE) with the aim at resolving coastal ocean dynamics and understanding different physical processes. The modeling system consists of a three-domain-nested weather research and forecasting model, FVCOM model with the inclusion of FVCOM surface wave model in order to understand the wave–current interactions. The ECS–CE system contains three different scale models: a shelf-scale model for the East China Sea, an estuarine-scale model for the Changjiang Estuary and adjacent region, and a fine-scale model for the deep waterway regions. These three FVCOM-based models guarantee the conservation of mass and momentum transferring from outer domain to inner domain using the one-way common-grid nesting procedure. The model system has been validated using data from various observation data, including surface wind, tides, currents, salinity, and wave to accurately reveal the multi-scale dynamics of the East China Sea and Changjiang Estuary. This modeling system has been demonstrated via application to the seasonal variations of Changjiang diluted water and the bottom saltwater intrusion in the North Passage, and it shows strong potential for estuarine and coastal ocean dynamics and operational forecasting.  相似文献   

17.
The source and transport mechanisms of land-derived Okinawa Trough sediments were studied using the field data of temperature, salinity and turbidity in the East China Seas. The results suggest that there are two primary sediments sources from the Chinese Mainland to the Okinawa Trough: one is the Old Huanghe River submarine delta, and the other is the Changjiang River sediments, which are distributed at the Changjiang River estuary and the off-coast of Zhejiang and Fujian provinces. It is difficult for the Huanghe River suspended sediments to arrive in the Okinawa Trough via the new estuary. Although the Taiwan warm current blocks the seaward terrigenous transportation to a certain extent, part of the coastal suspended sediments are transported to the outer shelf. Suspended particulate matter is unable to get through the barrier of the Kuroshio Current under normal conditions. However, episodic events, such as winter storms, internal-tidal waves and turbidity flows, are capable of transporting suspended particulate matter into the Okinawa Trough. The super typhoon “Ewiniar” induced strong waves and influenced the thermocline depth and suspended sediment concentration of the East China Seas. The typhoon-induced waves pushed the thermocline depth down to around 40 m and caused the resuspension of large volumes of sediments in its path. In the other East China Seas regions, the typhoon-induced swells deepened the thermocline depth by about 5 m and increased suspended sediment concentrations. The typhoon effect on suspended sediment concentration of the East China Seas disappeared within 2 weeks.  相似文献   

18.
The Pearl River Estuary (PRE) in South China's Guangdong Province is a subtropical estuary with highly irregular topography and dynamically complicated circulations. A nested-grid coastal circulation modelling system is used in this study to examine dynamic responses of the PRE to tides, meteorological forcing and buoyancy forcing. The nested-grid modelling system is based on the Princeton Ocean Model and consists of three downscaling subcomponents: including an outer-most model with a coarse horizontal resolution of ~7 km for simulating tidally forced and wind-driven surface elevations and depth-mean currents over the China Seas from Bohai Sea to the northern South China Sea and an innermost model with a fine resolution of ~1.2 km for simulating the 3D coastal circulation and hydrography over the PRE and adjacent coastal waters. Model results during the winter northeast monsoon surge in January and super typhoon Koryn in June of 1993 are used to demonstrate that the 3D coastal circulation and hydrographic distributions in the PRE are affected by tides, winds and buoyancy forcing associated with river discharge from the Pearl River with significant seasonal and synoptic variabilities.  相似文献   

19.
Wave climate plays an important role in the air-sea interaction over marginal seas. Extreme wave height provides fundamental information for various ocean engineering practices, such as hazard mitigation, coastal structure design, and risk assessment. In this paper, we implement a third generation wave model and conduct a high-resolution wave hindcast over the East China Sea to reconstruct a 15-year wave field from 1988 to 2002 for derivation of monthly mean wave parameters and analysis of extreme wave conditions. The numerical results of the wave field are validated through comparison with satellite altimetry measurements, low-resolution reanalysis, and the ocean wave buoy record. The monthly averaged wave height and wave period show seasonal variation and refined spatial patterns of surface waves in the East China Sea. The climatological significant wave height and mean wave period decrease from the open ocean in the southeast toward the continental area in the northwest, with the pattern generally following the bathymetry. Extreme analysis on the significant wave height at the buoy station indicates the hindcast data underestimate the extreme values relative to the observations. The spatial pattern of extreme wave height shows single peak emerges at the southwest of Ryukyu Island although a wind forcing with multi-core structure at the extreme is applied.  相似文献   

20.
《Continental Shelf Research》2006,26(12-13):1469-1480
The generation of internal waves in the partially mixed estuaries is examined. The numerical experiments consider the barotropic tidal currents interacting with isolated obstacles in an open channel. The bottom boundary layer and longitudinal salinity gradient are included. Internal lee (arrested) waves are excited when the accelerating barotropic tidal current approaches the first-mode internal wave speed. The arrested waves are amplified, and are subsequently released when the decelerating tidal current falls below the first-mode internal wave speed. The power input from the barotropic tidal energy into internal wave energy is calculated. It is on the order of 10−2 W/m2, and is comparable to the estimated interior dissipation rate. This suggests that the tidally generated internal waves could be a significant energy source for mixing in the halocline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号