首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The X-ray fluorescence and ICP methods were used to analyze 60 outcrop samples of black shale, of which 15 were collected from Belait, 15 from the Setap Shale, 15 from Temburong, and 15 from the Trusmadi formations. The average compositions of the shales from the study area are 64.62%, 63.95%, 62.32%, 63.84% SiO2, 1.84%, 2.14%, 2.04%, 1.99% MgO, 2.55%, 3.12%, 2.89%, 2.72% K2O, 0.32%, 0.30%, 0.32%, 0.53% CaO, 5.86%, 6.06%, 7.14%, 6.60% Fe2O3, 207×10^-6, 180×10^-6, 213×10^-6, 200×10^-6 Rb, and 56×10^-6, 49×10^-6, 50×10^-6, 32×10^-6 Sr for the Setap Shale, Temburong, Belait and Trusmadi samples, respectively. The high Rb/Sr ratios of 3.8, 3.7, 4.2, and 6.1 are attributed to the lowest contents of Sr due to reducing conditions prevailing. The high Rb/K ratio sug- gests either brackish marine or rapid deposition that prevented equilibrium between Rb and K in the shales and marine waters.  相似文献   

2.
The Duolanasayi gold deposit, 60 km NW of Habahe County, Xinjiang Uygur Autonomous Region, is a mid-large-scale gold deposit controlled by brittle-ductile shearing, and superimposed by albitite veins and late-stage magma hydrothermal solutions. There are four types of pyrite, which are contained in the light metamorphosed rocks (limestone, siltstone), altered-mineralized rocks (chlorite-schist, altered albite-granite, mineralized phyllite), quartz veins and carbonatite veinlets. The pyrite is the most common ore mineral. The Au-barren pyrite is present mainly in a simple form and gold-bearing pyrite is present mainly in a composite form. From the top downwards, the pyrite varies in crystal form from {100} and {210} {100} to {210} {100} {111} to {100} {111}. Geochemical studies indicate that the molecular contents of pyrite range from Fe1.057S2 to Fe0.941S2. Gold positively correlates with Mn, Sr, Zn, Te, Pb, Ba and Ag. There are four groups of trace elements: Fe-Cu-Sr-Ag, Au-Te-Co, As-Pb-Zn and Mn-V-Ti-Ba-Ni-Cr in pyrite. The REE characteristics show that the total amount of REE (ΣREE) ranges from 32.35×10 -6 to 132.18×10 -6; LREE/HREE, 4.466-9.142; (La/Yb)N, 3.719-11.133; (Eu/Sm)N, 0.553-1.656; (Sm/Nd)N, 0.602-0.717; La/Yb, 6.26-18.75; δEu, 0.628-2.309; δCe, 0.308-0.816. Sulfur isotopic compositions (δ 34S=-2.46‰--7.02‰) suggest that the sulfur associated with gold mineralization was derived from the upper mantle or lower crust.  相似文献   

3.
对采自北京地区中元古界下马岭组的页岩样品,进行了地球化学研究,结果表明:主量元素Al2O3、Ca O和Na2O含量明显偏低,K2O和Mn O含量稍微偏低,Si O2、Ti O2及Fe2O3T含量同上地壳基本一致。微量元素及其比值特征显示源岩为混合源岩。稀土元素总量较高,轻稀土富集、重稀土平坦,铕明显负异常、铈弱负异常,各样品稀土元素配分模式与大陆上地壳一致,显示了沉积物具有同源性。源岩为来自于内蒙古隆起的花岗岩类、闪长岩类及基性岩的混合。微量元素比值及铈弱负异常的特征表明中元古界下马岭组页岩为覆水较深的还原环境沉积,源区构造背景为大陆岛弧。  相似文献   

4.
贵州省松桃县道坨超大型锰矿床的发现及其成因探讨   总被引:5,自引:0,他引:5  
贵州省松桃县道坨锰矿床是新发现的一个超大型全隐伏锰碳酸盐矿床。文章阐述了该矿床的发现概况及基本的地质和地球化学特征,并应用锰矿石和含锰黑色页岩的元素和碳同位素地球化学特征对菱锰矿的形成机制提出了制约。道坨超大型锰矿床的发现是填图及对区域地质资料综合分析的结果。该矿床具有品位高、厚度大、呈层性好及展布广等特点。其锰矿石的主量元素特征为Al2O3、TiO2、Fe2O3含量较低,P2O5中等程度富集,MnO、MgO含量相对较高,Fe/Mn比值低。在微量元素方面,锰矿石显示出较为明显的Co富集,含锰黑色页岩则显示出较为明显的Co、Mo富集;在稀土元素方面,锰矿石具有较高的稀土元素总量,轻微的"帽式"稀土元素PAAS标准化配分模式及明显的Ce正异常,含锰黑色页岩的稀土元素总量与PAAS接近,其稀土元素PAAS标准化配分模式较为平坦,无Ce异常。碳同位素测试结果显示出菱锰矿富集碳的轻同位素,表明在菱锰矿形成过程中存在有机碳的参与。文章表明,道坨锰矿床内的锰是以氧化物或氢氧化物的形式沉淀,菱锰矿是在缺氧且富含有机物质的成岩环境中转化而成。  相似文献   

5.
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.  相似文献   

6.
The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10^-6-1191×10^-6; av.=549×10^-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10^-6-1169×10^-6; av.= 466×10^-6), while the HREE show low abundance (4×10^-6-107×10^-6; av.=28×10^-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fo2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.  相似文献   

7.
皖北新元古代刘老碑组页岩的地球化学特征及其地质意义   总被引:16,自引:0,他引:16  
从安徽北部新元古代刘老碑组页(泥)岩中采集了11个样品。地球化学分析表明,研究区南部的淮南和凤阳页岩样品SiO2、TiO2、Al2O3、K2O、TFeO和CaO含量分别为55.28%、0.87%、15.60%、2.99%、4.01%和5.83%,接近页岩平均值,只是CaO含量稍高。北部宿县地区页岩样品SiO2、TiO2、Al2O3、K2O、TFeO和CaO含量分别为57.01%、1.82%、20.97%、4.85%、3.31%和0.57%,与南部地区相比,TiO2和K2O含量显著偏高,是其2.1倍和1.6倍。刘老碑组页岩REE总量平均为219×10-6,LREE富集,La/Yb为14.2(9.8~18.6),Eu负异常,Eu/Eu*为0.60(0.54~0.63),但是北部页岩有更高的REE总量(295.8×10-6)和La/Yb比值(17.8)。微量元素分析表明,北部页岩中Sc、V、Zr、Nb和Th较高,南部Co和Pb较高。但是南部和北部却有比较一致的La/Sc(2.29±0.15)、Th/Sc(0.69±0.06)和La/Th(3.29±0.20)比值。La-Th-Sc和Th-Sc-Zr/10判别图清楚地表明,刘老碑组页岩形成于大陆岛弧构造环境,岛弧可能位于研究区的南部边缘。北部页岩明显偏高的TiO2和Al2O3含量以及化学风化指数(CIW)表明北部沉积物的源区经历了更强烈的风化作用。  相似文献   

8.
The Datangpo‐type manganese ore deposits, which formed during the Nanhuan (Cryogenian) period and are located in northeastern Guizhou and adjacent areas, are one of the most important manganese resources in China, showing good prospecting potential. Many middle‐to‐large deposits, and even super‐large mineral deposits, have been discovered. However, the genesis of manganese ore deposits is still controversial and remains a long‐standing source of debate; there are several viewpoints including biogenesis, hydrothermal sedimentation, gravity flows, cold‐spring carbonates, etc. Geochemical data from several manganese ore deposits show that there are positive correlations between Al2O3 and TiO2, SiO2, K2O, and Na2O, and strong negative correlations between Al2O3 and CaO, MgO, and MnO in black shales and manganese ores. U, Mo, and V show distinct enrichment in black shales and inconspicuous enrichment in Mn ores. Ba and Rb show strong positive correlations with K2O in manganese ores. Cu, Ni, and Zn show clear correlations with total iron in both manganese ores and black shales. ∑REE of manganese ores has a large range with evident positive Ce anomalies and positive Eu anomalies. The Post Archean Australian Shale (PAAS) normalized rare earth element (REE) distribution patterns of manganese ores present pronounced middle rare earth element (MREE) enrichment, producing “hat‐shaped” REE plots. ∑REE of black shales is more variable compared with PAAS, and the PAAS‐normalized REE distribution patterns appear as “flat‐shaped” REE plots, lacking evident anomaly characteristics. δ13C values of carbonate in both manganese ores and the black shales show observable negative excursions. The comprehensive analysis suggests that the black shales formed in a reducing and quiet water column, while the manganese ores formed in oxic muddy seawater, which resulted from periodic transgressions. There was an oxidation–reduction cycle of manganese between the top water body and the bottom water body caused by the transgressions during the early Datangpo, which resulted in the dissolution of manganese. Through the exchange of the euphotic zone water and the bottom water, and episodic inflow of oxygenated water, the manganese in the bottom water was oxidized to Mn‐oxyhydroxides and rapidly buried along with algae. In the early diagenetic stage, Mn‐oxyhydroxides were reduced and dissolved in the anoxic pore water and then transformed into Mn‐carbonates by reacting with HCO3? from the degradation of organic matter or from seawater. In the intervals between transgressions, continuous supplies of terrigenous clastics and the high productive rates of organic matter in the euphotic zone resulted in the deposition of the black shales enriched in organic matter.  相似文献   

9.
The Liuyuan area,which is located on the southern margin of the Beishan orogenic belt,develops abundant Early Paleozic granitoids.SHRIMP zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 421±8 Ma for the Liuyuan granodiorite(Zhao Zehui et al.,2007),implying its Late Silurian intrusion.Geochemical compositions showed that the Liuyuan granodiorite is characterized by high SiO2(65.01%-67.31%),A12O3(17.17%-18.05%) and Na2O(Na2O/K2O=1.67-1.87) but low Mg# contents calculated as 100×Mg2+/(Mg2++∑Fe2+) from 28.77 to 31.15,as well as being enriched in Sr(472×10-6-517×10-6) but depleted in Yb(1.2×10-6-1.42×10-6) and Y(12.8×10-6-14×10-6).The REEs are characterized by right-inclined patterns with LREE enrichment,HREE depletion and slightly negative Eu anomalies(Eu/Eu*=0.91-0.97).Major and trace elements indicate that the granodiorite is an adakite.The Nb/Ta values of the granodiorite vary from 10.80 to 18.01 and Nb/U from 6.32 to 10.09,both lying between the values of the crust and the mantle.The rock has low εNd(t) values(-2.5--0.8) and high ISr(0.706321-0.706495).Geochemical and Sr-Nd isotopic compositions indicate that the Liuyuan granodiorite is possibly derived from partial melting of thickening lower crust,related to mantle underplating.The Yb-Ta and Y+Nb-Rb discriminant diagrams imply the Liuyuan granodiorite intruded in a local extensional tectonic setting during late collision.Combined with previous studies on geochronology,geochemistry and tectonic setting of granitoids,we interprete that the constraint of this adakite in the Liuyuan area indicates that the tectonic setting may have transformed from collision to extension during the Early Devonian.  相似文献   

10.
The mineralogical and geochemical characteristics of the Upper Triassic Baluti shale from the Northern Thrust Zone (Sararu section) and High Folded Zone (Sarki section) Kurdistan Region, Iraq, have been investigated to constrain their paleoweathering, provenance, tectonic setting, and depositional redox conditions. The clay mineral assemblages are dominated by kaolinite, illite, mixed layers illite/smectite at Sararu section, and illite > smectite with traces of kaolinite at Sarki. Illite, to be noted, is within the zone of diagenesis. The non-clay minerals are dominated by calcite with minor amounts of quartz and muscovite in Sararu shale; and are dominated by dolomite with amounts of calcite and quartz in Sarki shale. Baluti shale is classified as Al-rich based on major and minor elements. The chemical index of alteration (CIA) is significantly higher in the Sararu than the Sarki shales, suggesting more intense weathering of the Sararu than the Sarki shales. The index of compositional variability (ICV) of the Sararu shale is less than 1 (suggesting it is compositionally mature and was deposited in a tectonically quiescent setting). More than 1 for Sarki shales (suggest it is less mature and deposited in a tectonically active setting). Most shale of the Baluti plot parallel and along the A-K line in A-CN-K plots suggest intense chemical weathering (high CIA) without any clear-cut evidence of K-metasomatism. Clay mineral data, Al enrichment, CIA values, and A-CN-K plot suggest that the source area experienced high degree of chemical weathering under warm and humid conditions, especially in Sararu. Elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/Eu*CN) shows slight difference between the Sararu and Sarki shales; and the ratios are similar to fine fractions derived from the weathering of mostly felsic rocks. The Eu/Eu* CN, Th/Sc, and low K2O/Al2O3 ratios of most shales suggest weathering from mostly a granodiorite source rather than a granite source, consistent with a source from old upper continental crust. Discrimination diagrams based on major and trace element content point to a role of the felsic-intermediate sources for the deposition of Baluti Formation, and probably mixed with mafic source rocks at Sararu section. The chondrite-normalized rare earth elements (REE) patterns are similar to those of PAAS, with light REE enrichment, a negative Eu anomaly, and almost flat heavy REE pattern similar to those of a source rock with felsic components. The source of sediments for the Baluti Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin; whereas the Sararu shale was affected by the mafic rocks of the Bitlis-Avroman-Bisitoun Ridge to the northeast of Arabian Plate. The tectonic discrimination diagrams, as well as critical trace and REE characteristic parameters imply rift and active setting for the depositional basin of the shale of Baluti Formation. The geochemical parameters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate that these shales were deposited under oxic environment and also show that Sarki shale was deposited under more oxic environment than Sararu.  相似文献   

11.
湖南常宁县康家湾铅锌金矿硅化角砾岩岩石地球化学特征   总被引:8,自引:0,他引:8  
许德如  刘静  陈广浩 《地质科学》2002,37(3):356-364
湖南常宁县康家湾铅锌金矿床硅化角砾岩带由未硅化角砾岩—极弱硅化角砾岩—硅化角砾岩—强硅化角砾岩(似硅质岩)组成,产于侏罗系与下伏二叠系间的不整合面附近,角砾成份复杂,充填物和胶结物类型多样。随着硅化程度的加强,硅化角砾岩带SiO2含量变化大,最高可达95.34%,而Al2O3、MgO、FeO、K2O、Na2O、CaO、CO2和P2O5含量特别是MgO、CaO、CO2和P2O5含量明显降低,且K2O>Na2O,TiO2的含量显著偏低。硅化角砾岩带LREE/HREE比值为1.95~4.93,Ce(δCe=0.44~0.81)和Eu(δEu=0.58~0.89)均为弱负异常,属轻稀土富集型,但随硅化程度增高稀土元素含量显著减少:未硅化和弱硅化角砾岩稀土元素总量较高,为(176.82~318.93)×10-10,与当冲组泥质岩配分曲线相似;硅化强烈的角砾岩稀土元素总量低,为(7.71~65.95)×10-10,与下伏栖霞组灰岩稀土元素配分曲线极为相似。结合微量元素F、Ba、Cl、Cr、Ni、Sr、V研究结果及硅化角砾岩带自底部至顶部特有的下粗上细的韵律性层理构造,认为康家湾铅锌金矿床硅化角砾岩带是在地台体制向地洼体制转变期的大地构造环境下,由于地壳快速隆升,二叠纪灰岩、泥质岩、石英砂岩等岩石剥蚀,在古河流环境下搬运、沉积形成的。此  相似文献   

12.
Rare earth element (REE) geochemistry on monomineral has been widely used in various fields of geosciences to reveal the origin of ore-forming materials and fluid. Quartz are ubiquitous mineral in the Shihu gold deposit that is situated in central shear zone of mesocenozoic Fuping metamorphic core complex in the middle-northern part of Taihang Mountains. Gold-bearing quartz veins are their most important industrial orebodies. Rare earth element abundances in quartz from the Shihu gold mine, as determined by laser ablation-indutively coupled plasma-mass spectrometry (LA-ICP-MS) analysis, are shown to be sensitive to identify barren quartz and mineralized quartz. Amounts of REE concentrations in barren quartz and mineralized quartz are 97 × 10−9 and 85 × 10−9, respectively. The average (La/Yb)N and (La/Sm)N ratios for the barren quartz are 0.25 and 0.13, and the ratios for mineralized quartz are 0.28 and 0.19, respectively. There is a pronounced positive correlation between (La/Yb)N and (La/Sm)N ratios. There is no obvious correlation between REE characteristics and sampling sites. The mineralized quartz show the most pronounced negative Ce anomalies, whereas weak negative Ce anomalies are typical of barren quartz vein. A negative Eu anomaly becomes more significant in mineralized quartz than barren quartz. δCe have a broadly positive correlation with δEu. Y/Ho ratio of barren quartz and mineralized quartz are ranging from 2.14–28.75, and from 1.28–9.92, respectively. The REE characteristics of quartz indicate that the ore-forming fluids of the gold deposit were derived from the deep fluid and its formation was dually controlled by Precambrian metamorphic basement and Mesozoic granitoids. The results significantly enhance the usefulness of quartz in tracing the sources of ore-forming fluid to discuss the genesis of the gold deposit, and as an indicator mineral in mineral exploration in Taihang mountain region.  相似文献   

13.
The paper discusses the mineralogy and geochemistry of altered rocks associated with calcite and dolomite–ankerite carbonatites of the Onguren dyke–vein complex in the Western Transbaikal Region. The alteration processes in the Early Proterozoic metamorphic complex and synmetamorphic granite hosting carbonatite are areal microclinization and riebeckitization; carbonates, phlogopite, apatite, and aegirine occur in the near-contact zones of the dolomite–ankerite carbonatite veins; and silicification is displayed within separated zones adjacent to the veins. In aluminosilicate rocks, microclinization was accompanied by an increasing content of K, Fe3+, Ti, Nb (up to 460 ppm), Th, Cu, and REE; Na, Ti, Fe3+, Mg, Nb (up to 1500 ppm), Zr (up to 2800 ppm), Ta, Th, Hf, and REE accumulated in the inner zone of the riebeckitization column. High contents of Ln Ce (up to 11200 ppm), U (23 ppm), Sr (up to 7000 ppm), Li (up to 400 ppm), Zn (up to 600 ppm), and Th (up to 700 ppm) are typical of apatite–phlogopite–riebeckite altered rock; silicified rock contains up to (ppm): 2000 Th, 20 U, 13000 Ln Ce, and 5000 Ва. Ilmenite and later rutile are the major Nb carriers in alkali altered rocks. These minerals contain up to 2 and 7 wt % Nb2O5, respectively. In addition, ferrocolumbite and aeschynite-(Ce) occur in microcline and riebeckite altered rocks. Fluorapatite containing up to 2.7 wt % (Ln Ce)2O3, monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), and aeschynite-(Ce) are the REE carriers in riebeckite altered rock. Bastnäsite-(Ce), rhabdophane-group minerals, and xenotime-(Y) are typical of silicified rock. Thorite, monazite-(Ce), and rhabdophane-group minerals are the Th carriers.  相似文献   

14.
In the surroundings of the Gaoqing-Pingnan fault zone are developed quite a number of gas reservoirs. Based on gas compositions, they can be divided into two groups, i.e., CO2 and CH4. Their composition and isotope geochemistry were dealt with in this study. The CO2 contents range from 60.72%–99.99%, the δ13CCO2 values from -3.41‰– -9.8‰, and the 3He/4He ratios from 4.35×10-6–6.35×10-6 (i.e. R/Ra=4.45–4.35). Based on the data on composition and isotope geochemistry, deep geological background, deep faults and volcanic rocks, it is shown that CO2 ,distributed in the Gaoqing area, mostly originated from mantle-source inorganic matter which is associated with magmatic rocks. The favorable tectonic environment for the formation of CO2 reservoirs is the rift, which is related to great fault-magmatic activity, the formation of CO2 gas pools and their space-time correlation to the most recent magmatic activities. Hydrocarbon gas pools occur in the Huagou area. The CH4 contents are within the range of 88.83%–99.12%, and the δ13CCH4 values, -44.7‰– -54.39‰. This indicates that the hydrocarbon gas resulted from the decomposition of oil-type gas at high temperatures. Volcanic rocks in the CO2 gas pool-and CH4 gas pool-distributed areas show significant differences in Fe2O3 and FeO contents. This has proven that the hydrocarbon gas may have resulted from various chemical reactions. Magmatic activities are the primary reason for the distribution of CO2 and CH4 gas pools in the Gaoqing-Pingnan fault zone.  相似文献   

15.
Carboniferous black mudrocks with known petroleum potential occur throughout Northern Germany. However, despite numerous boreholes exploring for conventional hydrocarbons, the potential for shale gas resources remains uncertain. Therefore, an integrated investigation was conducted to elucidate the shale gas potential for three different Carboniferous facies incorporating baseline parameters from sedimentological and organic-geochemical analyses. Tournaisian–Namurian fine-grained rocks of the Culm-facies, with Type II + III kerogen were deposited in the basin center. TOC contents of up to 7 % occur in the Lower Alum Shale (3.6 % VRr) and up to 6 % in the Upper Alum Shale (4.4 % VRr). Bands of organic-rich black shales, reflecting sea-level variations controlled by global eustatic cycles, occur within the Tournaisian–Visean “Kohlenkalk”-facies north of the Rhenish Slate Mountains and in the Rügen island area. In both areas the organic matter is characterized by a kerogen Type II + III with TOC contents of up to 7 % and maturities of up to 4.2 and 1.8 % VRr, respectively. Black hemipelagites intercalated with coarser-grained silt- and sandstones occur in the Synorogenic Flysch Formation of the Namurian A along the southern basin margin. TOC contents vary from 0.5 to 2.0 % with Type III kerogen dominated organic matter and maturities of up to 2.5 % VRr. The baseline parameters presented in this paper indicate a shale gas potential for the sediments of the Culm-facies on the southern basin margin and of the “Kohlenkalk”-facies in the Rügen area.  相似文献   

16.
Geochemical evaluation of the distribution of heavy metals in soils of Port Harcourt and its environs in the Niger Delta region is presented in respect of anthropogenic factor and index of geoaccumulation. Sixteen (16) soil samples were collected from two horizons (0-10 cm and 100 cm) from the various grids and analyzed. The geo-chemical analyses showed the vertical and horizontal distributions of heavy metals. The results showed the ranges of the metals determined as follows: Pb (6.86-2.49)×10-6, with an average of 4.63×10-6; Cd (0.05-0.00)×10-6, with an average of 0.02×10-6, As (0.01-0.00)×10-6, with an average of 0.00×10-6. Cu (15.36-10.80) ×10-6, with an average of 13.36×10-6, and V (1.36-0.20)×10-6, with an average of 0.94×10-6. Quantification of the degree of pollution was carried out using anthropogenic factor (AF) and index of geoaccumulation (Igeo). The Igeo values of 0.06, 0.02 and 0.00 for Pb, Cd and As, respectively indicate low-level contamination while Zn (1.14) and V (1.40) show me-dium-level contamination. The sources of contamination are attributed to urbanized anthropogenic activities. The majority of the samples analyzed show that the AF values are less than 1 with the exception of vanadium (V) whose AF values range from 2.73 to 13.60×10-6. Vanadium is more enriched than As, Cd, Pb, and Cu. The order of degrees of anthropogenic contamination and index of geoaccumulation in the soil is V >Zn >Pb >Cu >Cd >AS. Metals were retained near the top soil and their concentrations in the deepest horizons were lower and normal for uncontaminated soils. Metal concentrations in the top soil horizons were significantly related to distance from the industrial and hu-man activities.  相似文献   

17.
徐跃通 《地质科学》1998,33(1):39-50
在信江盆地中存在数层和石炭纪海相火山岩及其海底块状硫化物矿层相伴生,与石炭纪地层整合产出的层状硅质岩。由对硅质岩常量元素、微量元素、稀土元素、硅和氧同位素等地球化学特征研究表明,本区硅质岩具有一定的热水沉积硅质岩地球化学特征。在Al-Fe-Mn和Fe-Mn-(Ni+Co+Cu)三角图上,本区硅质岩属热水沉积硅质岩。由硅质岩MnO/TiO2比值、δCe值和δ30Si值分析表明,信江盆地石炭纪硅质岩的沉积环境主要为浅海。  相似文献   

18.
A black shale sample collected from the Chimiari site(Tarbela) was analyzed for elemental contents.Inductively coupled plasma-optical emission spectrometry(ICP-OES) was employed to determine major and trace elements in the digests.Precise analysis was accomplished for the black shales,which was better than 2.0%.Result shows that the shales are very rich in Ca(25439 μg·g-1),Fe(13933 μg·g-1),Ti(6932 μg·g-1),Al(5993 μg·g-1) and K(2730 μg·g-1).  相似文献   

19.
大黑山铝土矿赋存于上二叠统宣威组底部,下伏地层为峨眉山玄武岩。矿石结构主要以泥晶结构为主,具有少量鲕状、粒屑结构。矿石构造以致密块状构造为主,局部呈层状、似层状。铝土矿石中Al2O3与Fe2O3、Si O2呈现较好的负相关关系,Ti O2与Zr、Hf、Nb、Ta相关性较好,Zr-Hf、Nb-Ta的相关性拟合度很高。铝土矿与峨眉山玄武岩样品具有相似的稀土元素配分模式。综合稳定元素相关性、微量元素及稀土元素标准化图解、lg Ni和lg Cr二元图解等分析方法对大黑山铝土矿的成矿物质来源进行探讨,研究结果表明铝土矿的成矿物质来源主要来自峨眉山玄武岩。  相似文献   

20.
 Complete chemical analyses, including ferric and ferrous iron, H2O contents and δD values for 16 phlogopite and biotite and 2 hornblende separates are presented. Samples were obtained from volcanic rocks from four localities: (1) phlogopite phenocrysts from minette lavas from the western Mexico continental arc, (2) biotite and hornblende phenocrysts from andesite lavas from Mono Basin, California, (3) phlogopite and biotite from clinopyroxenite nodules entrained in potassic lavas from the East African Rift, Uganda, and (4) phlogopite phenocrysts from a wyomingite lava in the Leucite Hills, Wyoming. The Fe2O3 contents in the micas range from 0.8 to 10.5 wt%, corresponding to 0.09 to 1.15 Fe3+ per formula unit (pfu). Water contents vary from 1.6 to 3.0 wt%, corresponding to 1.58 to 3.04 OH pfu, significantly less than would be expected for a site fully occupied by hydroxyl. Cation- and anion-based normalization procedures provide accurate mineral formulae with respect to most cations and anions, but are unable to generate accurate estimates of Fe3+/FeT, and overestimate OH at the expense of O on the hydroxyl site. These inaccuracies are present despite acceptable adjusted totals and stoichiometric calculated site occupancies. The phlogopite and biotite phenocrysts in arc-related lavas from western Mexico and eastern California have the highest Fe3+/FeT ratios (56–87%), reflecting high magmatic oxygen fugacities (ΔNNO = +2 to +5), in contrast to those from Uganda (25–40%) and the Leucite Hills (23%). There is no correlation between the OH content and the Fe3+/FeT ratio in the micas. Values of KMg/Fe2+D (± 2σ errors) were calculated for three phlogopite-olivine pairs (0.12 ± 0.12, 0.26 ± 0.14, 0.09 ± 0.12), two biotite-hornblende pairs (0.73 ± 0.08 and 1.22 ± 0.10) and a single phlogopite-augite pair (1.15 ± 0.12). Values of KF/OHD for two biotite and hornblende pairs could not be determined without significant error because of the extremely low F contents (< 0.2 wt%) of the four phases. The δD values obtained in this study encompass a large range (−137 to −43‰). The phlogopite and biotite separates from Uganda have δD values of −70 to −49‰, which overlap those believed to represent “primary” mantle. There is a larger range in δD values (−137 to −43‰) for phlogopite phenocrysts from western Mexico minette lavas, although their range in δ18O values (5.2–6.2‰) is consistent with “normal” mantle. It is unlikely, therefore, that the variable δD values reflect heterogeneity in the mantle source region of the minette magmas. Nor can the extremely low δD values reflect degassing of H2 or H2O since almost 100% loss of dissolved water in the magma is required, an unrealistic scenario given the stability of the hydrous phenocrysts. The very low δD values of the Mascota minette phlogopites require that the hydrogen be introduced from an external source (e.g., meteoric water). Whatever the process responsible for the observed hydrogen isotope composition, it had no effect on the δ18O value, f O 2, a H 2O or bulk composition of the host magmas. Received: 5 January 1995 / Accepted: 19 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号