首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
通过对达则错沉积岩心有机质碳同位素(δ13C)和碳氮比(C/N)的分析,结合岩心浮游生物记录、营养盐记录以及温度和降水记录,探讨了过去一千年达则错沉积物有机质δ13C的气候环境指示意义.结果表明,达则错沉积物有机质主要以湖泊自生的水生生物碎屑混合物为主;过去一千年,达则错在受人类活动显著影响之前,气候变化是影响沉积物有机质δ13C形成的主要因素,在1050~1200 AD和1450~1650 AD气候寒冷干燥时段有机质δ13C值显著偏重,反之则相反;过去150年,湖泊沉积物有机质δ13C显著偏重,主要受人类活动导致湖泊营养盐浓度变化影响.本研究还表明对于营养结构较为单一,且西藏拟溞为绝对优势动物物种的半对流型湖泊,应用C/N值判断湖泊有机质来源是不可靠的,需要综合湖泊地理背景谨慎判断.   相似文献   

2.
研究青藏高原北部湖泊表层沉积物参与卡尔文循环固碳基因多样性及其对盐度的响应.采用构建克隆文库、聚合酶链式反应、rbcL基因系统发育分析等方法,研究青藏高原6个典型湖泊(洱海、青海湖、托素湖、尕海、小柴旦湖、茶卡盐湖)表层沉积物微生物rbcL基因多样性,揭示不同湖泊中固碳微生物种群构成,同时初步分析各个湖泊中固碳微生物种群组成与环境参数的关系.结果显示:所有表层沉积物样品中固碳微生物共分3个门,即:变形菌门(Proteobacteria)、蓝藻门(Cyanobacteria)和绿藻门(Chlorophyta),分属于以下8个纲:Acidithiobacillia、α-Proteobacteria、β-Proteobacteria、γ-Proteobacteria、Chroococcidiopsidales、Oscillatoriophycideae、Synechococcales和Chlorophyceae.其具体分布情况有较大差异,从整体上分为3大类:在淡水湖泊(洱海)中,Synechococcales纲是主要固碳菌群,相对丰度为71.32%;在咸水湖泊(青海湖、托素湖)中,β-Proteobacteria纲、Synechococcale纲和Oscillatoriophycideae纲是主要固碳菌群,相对丰度分别是36.20%、23.47%和22.02%;在超盐湖泊(尕海、小柴旦湖、茶卡盐湖)中,Acidithiobacillia纲和Chlorophyceae纲是主要固碳菌群,相对丰度分别是53.33%和30.40%. Mantel检验结果显示,固碳微生物群落分布与盐度、溶解有机碳(DOC)、总磷、总氮、溶解无机碳(DIC)、pH及叶绿素a浓度存在显著的相关关系(P 0.05).ABT进一步分析显示,总磷对微生物群落的影响强度最大,相对影响强度百分比是20.04%.其次是盐度,相对影响强度百分比是16.81%.变形菌门(主要为Acidithiobacillia)和Synechococcale纲是青藏高原北部表层沉积物主要固碳微生物.不同盐度环境中的固碳微生物群落组成差异较大,盐度相似的环境中固碳微生物群落组成相似.因此,盐度和总磷是影响湖泊固碳微生物群落分布的主要因素.  相似文献   

3.
由中国地质科学院下达、中国地质科学院矿产资源研究所承担的《西藏高原盐湖资源潜力评价及锂、硼、铯元素提取技术探索研究》项目在 2 0 0 1年的野外调查中取得了如下重要进展。(1)项目组在海拔 4 5 0 0m以上的无人区系统地调查了藏北东部的 15个主要湖泊 (包括盐湖 ) ,其中有8个属新查湖泊。新发现 3个产卤虫盐湖 ,1个产西藏拟蚤盐湖。样品分析结果进一步证实了藏北东部存在一个潜在的盐湖锂资源聚集区。(2 )对重点盐湖开展了卤水资源评价工作 ,按枯水期、平水期、丰水期的卤水评价规范要求 ,已完成丰水期的取样任务 ;测制了一条第四纪古…  相似文献   

4.
采自西藏阿里地区五县市几个层位的腹足类化石分属早奥陶世、早石炭世、早二叠世、早白垩世(多数)、晚白垩世(少数)及第三纪等时限;共计31种(包括12个新种、3个相似种、8个未定种),归入26属(包括1新属),分属14科。它们的地理分布及与它区的对比也略予论述。  相似文献   

5.
为了研究玉米根际土壤细菌群落对土壤Cd污染的响应,本研究基于Illumina MiSeq高通量测序平台,对取自甘肃省白银市四龙镇地区的4组不同Cd污染程度的土壤样品进行16S rDNA扩增子测序分析。结果显示:4组不同Cd污染程度的玉米根际土壤细菌样品的Chao1指数和Shannon指数差异性不明显(p>0.05),表明Cd污染对土壤细菌多样性的影响不显著。4组样品的细菌丰富度相似,优势类群大致相同。4组样品的优势门均为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和浮霉菌门(Planctomycetes),优势菌属为Ohtaekwangia、GP4、GP6、硝化螺旋菌属(Nitrospira)和芽单胞菌属(Gemmatimonas)等。Ohtaekwangia和芽单胞菌属的细菌抗逆性较强,随着环境中Cd含量的增加,其细菌相对丰度增加,而GP4和GP6的细菌抗逆性较差,其相对丰度会随土壤Cd含量的降低而降低。Cd污染会引起土壤中细菌的多样性变化,但细菌多样性与土壤中Cd含...  相似文献   

6.
本文对乌兰诺尔湖浮游生物进行了调查研究。调查结果显示,该湖共有浮游植物30个属,隶属于6个门,其中蓝藻门8个属,绿藻门13个属,硅藻门5个属,甲藻门2个属,黄藻门1个属,金藻门1个属。其中,优势种是蓝藻门中的微囊藻,其生物量为1.643mg/l,占总生物量的20.67%。有浮游动物28种,其中桡足类4种,枝角类4种,轮虫13种,原生生物7种。其中,优势种为桡足类的镖水蚤,生物量为1.84mg/l,占总生物量的47.67%。  相似文献   

7.
祁连山冻土区天然气水合物DK-2钻孔微生物群落   总被引:1,自引:0,他引:1  
韩路  武淑娇  李建华  吕杰  祝有海 《地质通报》2011,30(12):1874-1882
对青海省祁连山永久冻土区天然气水合物DK-2钻孔的11件样品进行分析,通过微生物群落分析来探寻水合物层样品与非水合物层样品的差别。在11件样品中均发现了细菌16S rDNA,未检测到海洋天然气水合物地区常见的古菌16S rDNA、mcrA(Ⅰ,Ⅱ)、pmoA、mmoX和mxaF。分析得到的细菌16S rDNA分属5个门,包括变形杆菌门、放线菌门、拟杆菌门、厚壁菌门和异常球菌-栖热菌门,随着样品深度的增加,细菌多样性有降低的趋势。对非水合物层样品DK2-19和水合物层样品DK2-25进行细菌系统发育树分析,发现这2个样品群落结构相差较大。水合物层样品与非水合物层样品细菌群落对比后发现,水合物层样品中γ-变形杆菌的比例低于非水合物层样品中γ-变形杆菌的比例,而Arthrobacter属多发现于非水合物层的样品中。  相似文献   

8.
浮游细菌群落对高原湖泊变化具有高度响应性,并且会影响高原湖泊生境的地球化学平衡。因此,了解高原湖泊中浮游细菌群落的分布特征,阐明其在高原湖泊生态系统中的生态功能具有重要科学意义。2021年5月对纳木错沿岸浮游细菌群落分布特征进行了调查研究,并采用16S rDNA高通量测序技术对样品进行分析,通过α-多样性指数分析浮游细菌群落的差异性,通过共现网络分析浮游细菌群落之间的相互作用,利用Pearson相关系数衡量理化因子与α-多样性指数的相关性,采用冗余分析(RDA)探讨水体理化因子对浮游细菌群落结构的影响,并基于PICRUSTt2对纳木错浮游细菌进行功能预测。结果表明:浮游细菌群落主要由变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、蓝细菌门(Cyanobacteria)和厚壁菌门(Firmicutes)组成,其中变形菌门相对丰度最高,主要包括γ-变形菌纲(Gamma-proteobacteria)和α-变形菌纲(Alpha-proteobacteria);噬氢菌属(Hydrogenophaga)和嗜冷菌属(Algoriphagus)为相对优势菌属。α-多样性指数表明,纳木错浮游细菌群落比较丰富。共现网络节点间关系以正相关为主;总溶解固体量(TDS)和盐度(Sal)是影响纳木错浮游细菌群落结构的关键因子。功能预测结果显示,纳木错浮游细菌群落功能主要涉及代谢、遗传信息处理、环境信息处理等6类生物代谢通路,以及膜运输、氨基酸代谢、碳水化合物代谢等46个子功能。综上所述,纳木错浮游细菌群落结构在各样点间存在一定差异,浮游细菌在门级水平上类群间相互作用主要为协同作用,其群落结构是多个因子共同作用的结果。研究阐明了纳木错浮游细菌群落组成和功能及其与环境因子的相互联系,可为当地生态环境保护提供科学依据。  相似文献   

9.
对青海省祁连山永久冻土区天然气水合物DK一2钻孔的11件样品进行分析,通过微生物群落分析来探寻水合物层样品与非水合物层样品的差别。在11件样品中均发现了细菌16SrDNA,未检测到海洋天然气水合物地区常见的古菌16SrDNA、mc以(I,Ⅱ)、pmoA、mmoX和mxaF。分析得到的细菌16SrDNA分属5个门,包括变形杆菌门、放线菌门、拟杆菌门、厚壁菌门和异常球菌一栖热菌门,随着样品深度的增加,细菌多样性有降低的趋势。对非水合物层样品DK2—19和水合物层样品DK2—25进行细菌系统发育树分析,发现这2个样品群落结构相差较大。水合物层样品与非水合物层样品细菌群落对比后发现,水合物层样品中叫一变形杆菌的比例低于非水合物层样品中1一变形杆菌的比例,而Arthrobacter属多发现于非水合物层的样品中。  相似文献   

10.
为探讨大塘钨矿石门寺隐爆角砾岩型钨矿床的成因,开展了野外详细观察、室内岩矿鉴定工作,用显微测温方法测定了隐爆角砾岩型矿体矿石石英中的流体包裹体,以及金属硫化物中的S同位素。结果显示,12件黄铜矿样品的δ34S值介于-1.4‰~-0.1‰之间,均值为-0.82‰;3件辉钼矿样品的δ34S值介于-0.8‰~0.2‰之间,均值为-0.33‰,表明S主要来自深部岩浆或者上地幔。均一温度介于152.1~387.1℃之间,主要集中在170~250℃;盐度为4.8%~14.9%Na Cleq(wt),均值为10.8%Na Cleq(wt),主要集中于8%~14%Na Cleq(wt)。表明成矿流体属中温、中-低盐度Na Cl-H2O±CO2体系,成矿流体在演化过程中经历了岩浆热液与低温、低盐度大气降水的混合作用与沸腾作用,流体的混合作用和沸腾作用是该类型含矿流体中络合物分解并沉淀成矿的主要因素。  相似文献   

11.
西藏高原盐湖的构造地球化学和生物学研究   总被引:3,自引:0,他引:3       下载免费PDF全文
郑绵平  刘喜方  赵文 《地质学报》2007,81(12):1698-1708
按盐湖的盐类组分和地质构造背景差别,将其概分为普通盐湖和特种盐湖。前者产于克拉通、地台等稳定构造区;后者分布于活动构造区,包括大陆边缘火山弧后盆地或陆-陆碰撞带,板块转换带后盆地。西藏高原盐湖产于陆-陆碰撞带;盐湖硼和稀碱元素主要来自高原深部壳层重熔岩浆,热水成为输入盐湖中的重要载体;盐湖水化学类型和组分特征控制了不同的成矿专属性。笔者等对藏北高原作了大范围盐湖生物概查,在调查的125个湖泊中,确定30个盐湖有卤虫繁衍。在羌塘北部21个湖泊中,已鉴定出浮游植物95种,主要种类有Gloeothece linearis,Doctylococcopsis rhaphichoidesHansg,Chroococcus minor,Naviculasp.,Cymbella pusilla,Dunaliellasalina,Chlorella rulgaris,Diatoma elongatum。浮游动物共鉴定出原生动物16种,主要种类有Voriticellaspp.,Epistylisspp.,Keratella quadrata,Daphniopsis tibetana,Artemiasp.等。  相似文献   

12.
Isotopic fractionations associated with two primary processes (evaporation and freezing of water) are discussed, which are responsible for the formation and evolution of saline lakes in deserts from both low-latitude and the Polar regions. In an evaporative system, atmospheric parameters (humidity and isotopic composition of water vapor) have strong influence on the isotopic behavior of saline lakes, and in a freezing system, salinity build-up largely controls the extent of freezing and associated isotope fractionation. In both systems, salinity has a direct impact on the isotopic evolution of saline lakes. It is proposed that a steady-state “terminal lake” model with short-term hydrologic and environmental perturbations can serve as a useful framework for investigating both evaporative and freezing processes of perennial saline lakes. Through re-assessment of own work and literature data for saline lakes, it was demonstrated that effective uses of the isotope activity compositions of brines and salinity-chemistry data could reveal dynamic changes and evolution in the isotopic compositions of saline lakes in response to hydrologic and environmental changes. The residence time of isotopic water molecules in lakes determines the nature of responses in the isotopic compositions following perturbations in the water and isotope balances (e.g., dilution by inflow, water deficit by increased evaporation, and/or reduction in inflow). The isotopic profiles of some saline lakes from the Polar regions show that they switched the two contrasting modes of operation between evaporative and freezing systems, in response to climate and hydrological changes in the past.  相似文献   

13.
The chemical and biological impacts of anthropogenic physical modifications (i.e., channelization, dredging, bulkhead, and jetty construction) to tributaries were assessed on New York’s Long Island South Shore Estuary. Water-quality data collected on Carmans, Patchogue, and Swan Rivers from 1997 to 2005 indicate no significant differences in nutrient levels, temperature, or pH among the rivers, but significant differences in light transmittance, dissolved oxygen (DO), salinity, and sediments were observed. Patchogue River (PR) and Swan River (SR) were significantly more saline than Carmans River (CR), PR and SR had less light transmittance than CR, and both exhibited severe warm season hypoxia. CR was rarely hypoxic and only at the lower layer of the deepest station in warm seasons. Deep stations on PR had hypoxic readings year round, but the shallower SR was well-oxygenated at all stations after the fall turnover. There were wide diel and seasonal variations in chlorophyll a on each river, and measurements were significantly higher at poorly flushed stations. In warm seasons, this often resulted in hyperventilation with supersaturated DO in the upper water column on sunny days, and suboxic conditions at nights and/or in deeper layers. PR sediments were anoxic, SR sediments ranged from normal to anoxic, and CR sediments were normal at all stations. Polyaromatic hydrocarbon concentrations in PR sediments were over three orders of magnitude higher than SR and CR sediments. Benthic invertebrate assessment of species richness, biotic index, and Ephemeroptera, Plecoptera and Trichoptera richness indicated that PR was severely impacted, SR ranged from slightly to severely impacted, and CR ranged from non-impacted to slightly impacted. Diversity and abundance of plankton were comparable on SR and CR, and were significantly higher than on PR. The data indicate that nutrients do not play a major role in hypoxia in these estuarine tributaries but that physical forces dominate. The narrow inlets, channelization, and abrupt changes in depth near the inlets of PR and SR foster hypoxic conditions by inducing salinity stratification that limits vertical mixing and by restricting horizontal water mass exchange with the bay. The study suggests that other tributaries with such physical modifications should be examined to assess the temporal and spatial extent of hypoxia.  相似文献   

14.
Major ion and stable isotope geochemistry allow groundwater/surface-water interaction associated with saline to hypersaline lakes from the Willaura region of Australia to be understood. Ephemeral lakes lie above the water table and locally contain saline water (total dissolved solids, TDS, contents up to 119,000 mg/L). Saline lakes that lack halite crusts and which have Cl/Br ratios similar to local surface water and groundwater are throughflow lakes with high relative rates of groundwater outflows. Permanent hypersaline lakes contain brines with TDS contents of up to 280,000 mg/L and low Cl/Br ratios due to the formation of halite in evaporite crusts. These lakes are throughflow lakes with relatively low throughflow rates relative to evaporation or terminal discharge lakes. Variations in stable isotope and major ion geochemistry show that the hypersaline lakes undergo seasonal cycles of mineral dissolution and precipitation driven by the influx of surface water and evaporation. Despite the generation of highly saline brines in these lakes, leakage from the adjacent ephemeral lakes or saline throughflow lakes that lack evaporite crusts is mainly responsible for the high salinity of shallow groundwater in this region.  相似文献   

15.
In order to study the distribution and evolution features of saline soil, the correlations between the groundwater depth, salinity and salinization of soil are examined through analyzing the hydrometeorological data and distribution maps of saline soil, groundwater depth and salinity in 1957 and 2005. The results show that the area of salinization has generally decreased. The area of salinization decreases with the increasing groundwater depth, and the dynamic evolution characteristics appeared between the groundwater depth and area of salinization. The area of heavy salinization is greatest when the groundwater salinity is > 5 g/L, the area of moderate salinization is greatest when the groundwater salinity is between 2-5 g/L, the area of light salinization is greatest when the groundwater salinity is 1-2 g/L and the area of non-salinization is greatest when the groundwater salinity is <1 g/L. The area of heavy salinization was characterized with groundwater depth <2.5 m and salinity >1.8 g/L. The area of non-salinization was characterized with groundwater depth >4.0 m and salinity 0.2-1.5 g/L.  相似文献   

16.
Estuaries are highly variable environments where fish are subjected to a diverse suite of habitat features (e.g., water quality gradients, physical structure) that filter local assemblages from a broader, regional species pool. Tidal, climatological, and oceanographic phenomena drive water quality gradients and, ultimately, expose individuals to other habitat features (e.g., stationary physical or biological elements, such as bathymetry or vegetation). Relationships between fish abundances, water quality gradients, and other habitat features in the Sacramento-San Joaquin Delta were examined as a case example to learn how habitat features serve as filters to structure local assemblages in large river-dominated estuaries. Fish communities were sampled in four tidal lakes along the estuarine gradient during summer-fall 2010 and 2011 and relationships with habitat features explored using ordination and generalized linear mixed models (GLMMs). Based on ordination results, landscape-level gradients in salinity, turbidity, and elevation were associated with distinct fish assemblages among tidal lakes. Native fishes were associated with increased salinity and turbidity, and decreased elevation. Within tidal lakes, GLMM results demonstrated that submersed aquatic vegetation density was the dominant driver of individual fish species densities. Both native and non-native species were associated with submersed aquatic vegetation, although native and non-native fish populations only minimally overlapped. These results help to provide a framework for predicting fish species assemblages in novel or changing habitats as they indicate that species assemblages are driven by a combination of location within the estuarine gradient and site-specific habitat features.  相似文献   

17.
Dinoflagellate cysts and other palynomorphs were studied from ODP Hole 1002C in the Cariaco Basin over the past 30 000 years. The assemblage shifts between a dominance of heterotrophic dinoflagellate cysts (mainly Brigantedinium spp., Lejeunecysta spp., Selenopemphix nephroides and Stelladinium reidii ) and autotrophic dinoflagellate cysts (mainly Spiniferites ramosus , Lingulodinium machaerophorum and Operculodinium centrocarpum ). These assemblage shifts are associated with stronger upwelling during stadials and stronger river influx during interstadials. Increases in productivity caused by enhanced upwelling are coupled to improved preservation and vice versa. More stratified water is indicated by higher abundances of L. machaerophorum and succeeds Heinrich events. The average process length of L. machaerophorum can be used to track changes in salinity, since this shows a similar pattern as the δ18OSW (paired Mg/Ca −δ18O) reconstruction. During the last glacial, conditions were more saline than during the current interglacial. On a millennial scale, changes in salinity are opposite to open ocean salinities and the hydrological proxies, which can be explained by a modulation of the signal by stratification, isolation of the Basin or advection of freshwater masses. These results highlight both generalities and particularities of the palaeoecological record of this tropical semi-enclosed basin.  相似文献   

18.
The composition of the zooplankton community in a macrotidal (8 m tidal range), tropical estuarine system (Darwin Harbour, Australia; 12o28′ S, 130o50′ E) was studied over a 2 year period with the goal of describing biodiversity and determining the environmental factors that have the greatest impact on community structure. Most (82–84%) of the >73 μm plankton was composed of copepod nauplii and copepodites, and plankton samples taken with larger, coarser meshed (150 and 350 μm) nets did not contain significant numbers of larger (non-copepod) organisms. In all, 32 copepod species were recorded, with small euryhaline marine copepod species such as Parvocalanus crassirostris, Bestiolina similis and Oithona aruensis dominating the zooplankton. Plankton abundances ranged between 30,000 and 110,000 m−3, and there were significant year (2003 > 2004), season (wet > dry) and site differences (inner harbour sites > outer harbour sites), but negligible diurnal differences. Multivariate analyses identified three sample groups: (1) middle and outer harbour sites, (2) inner harbour and river sites and (3) the river site during the wet seasons. Middle and outer harbour stations were characterised by a diverse mixture of coastal copepods, whereas inner harbour and river sites were dominated by P. crassirostris and O. aruensis. During the wet season, there was a distinct copepod community within the Blackmore River, dominated by Acartia sinjiensis, Oithona nishidai and Pseudodiaptomus spp. Environmental variables (nutrients and chlorophyll a) were correlated with salinity, which had the strongest influence on community structure. There was a significant drop in species richness from harbour to river sites. Small copepods of the families Paracalanidae and Oithonidae dominate tide-dominated Australian tropical estuaries, whereas copepods belonging to the family Centropagidae (such as Gladioferens spp.) appear to be characteristic of wave-dominated estuaries in southern Australia.  相似文献   

19.
The effect of separation by aquitard layers on the distribution of saline groundwater in coastal aquifers has been demonstrated in two Israeli coastal aquifers: the Mediterranean and the Dead Sea aquifers. There is vertical separation in the Dead Sea area, even where the clayey aquitard layers are <1?m thick, exhibited by large differences in hydraulic head (2?C5?m), salinity (TDS of 50?C340?g/L) and chemical composition (e.g. Na/Cl range 0.28?C0.55). Similar features are found in the Mediterranean coastal aquifer, where the separating aquitard layers are thicker (??5?C10?m). Here, the different subaquifers host fresh and saline groundwater of different ages (tritium and 14C ages range from tens to thousands of years), as well as different chemical compositions. This high resolution of results can be obtained only by drilling without fluids; otherwise, the spatial information may lead to incorrect representation of the studied aquifer. This is especially important in saline systems where only partial flushing occurs and, thus, large variations in salinity and chemical composition are expected. The main factors controlling the salinity of groundwater in subaquifers in coastal aquifers are their connection to the sea or saline lakes, existence of brines, salinization and flushing rates, and separation by aquitard layers.  相似文献   

20.
Changes in paleoecology and climate of northern Tunisia during the last 3000 years were reconstructed based on the flood history interpreted from a 172-cm sediment core of Lake Ichkeul (NW Tunisia). Seven wet/dry episodes were identified based on biological (ostracods, foraminifera and mollusks) and biotic indices (H and E index, species richness and abundance). These proxy-based environmental changes were supported by correspondence analyses (CAs) and ecophenotypic responses of the brackish taxon Cyprideis torosa in addition to a grain-size study. Two dry episodes were identified in the lower (EP1) and upper (EP7) parts of the core. These were marked by the dominance of the brackish ostracod C. torosa. High water salinity was indicated by the presence of the brackish ostracod Loxoconcha elliptica, the foraminifer Ammonia sp. and lagoonal mollusks. The occurrence of the freshwater ostracods Ilyocypris sp., Herpetocypris sp., Dawinula stevensoni and Limnocythere inopinata was associated with high species richness and ecophenotypic changes of C. torosa valves indicating lower salinity during three major wet episodes (EP2, EP4, and EP6). The ecological and environmental changes, occurring between 3050 and 50 cal. year BP, are most likely linked to an increase of fluvial inputs which are also recognized in several other Mediterranean lakes. The humid episodes were interrupted by two saline periods (EP3 and EP5) during which freshwater ostracod assemblages declined, diversity indices dropped to the lowest values, and fine-grained sediments became dominant. The top of the core is characterized by the remarkable dominance of L. elliptica coupled with C. torosa, the absence of freshwater ostracods, and the changes in grain-size sediment parameters which are most likely the result of anthropogenic activities. The changes in hydrochemistry and sedimentology were attributed to the deepening of the Bizerte navigation canal, main wadis damming, and Tinja sluice construction which mostly occurred in the XXth century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号