首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
董超  陈斌  袁洁浩  王振东  王粲 《地震学报》2021,43(4):453-462
本文利用2019年和2020年两期的全国流动地磁矢量数据,针对玛多MS7.4地震震中附近的岩石圈磁场空间分布,分析研究了岩石圈磁场各个分量的震前变化特征。结果表明,玛多MS7.4地震发生前,震中附近的岩石圈磁场分量均发生了不同程度的变化:震中位于各分量的弱变化区域和零变线附近;震中位于各分量的高梯度带和低梯度带之间。本文证实了地震发生前会引起岩石圈磁场变化这一现象,并总结了震前地磁分量的变化特征,为今后强地震(尤其是M≥7.0地震)的震磁关系研究提供了一个震例参考。   相似文献   

2.
On July 31th, 2016, a magnitude 5.4 earthquake struck Cangwu Country, Guangxi Zhuang Autonomous Region, it was the largest earthquake recorded by Guangxi Seismological Network since it set up. The number of people affected by the earthquake had reached 20 000, and the direct economic losses caused by the earthquake were nearly 100 million Yuan. After the earthquake, USGS provided a global earthquake catalog showing that the focal depth of Cangwu earthquake was about 24.5km. However, the result given by the Global Centroid Moment Tensor showed the focal depth of this earthquake was 15.6km. However, the result obtained by Xu Xiaofeng et al. using CAP method was 5.1km. It was clear that the focal depths of Cangwu earthquake given by different institutions were quite different from each other. However, accurate focal depth of the earthquake has important significance for exploring the tectonic mechanism near the epicenter, so it is necessary to further determine the more accurate depth of the Cangwu earthquake. In order to further accurately determine the focal depth of Cangwu earthquake, we used the global search method for travel-time residual to calculate the focal depth of this earthquake and its error range, based on the regional velocity model, which is a one-dimensional velocity model of the Xianggui tectonic belt produced by the comprehensive geophysical profile. Then, we inverted the focal mechanism of this earthquake with the CAP method. Based on this, the focal depth of Cangwu MS5.4 earthquake was further determined by the method of the Rayleigh surface wave amplitude spectrum and the sPL phase, respectively. Computed results reveal that the focal depth of this earthquake and its error range from the travel-time residual global search method is about(13±3)km, the focal depth inverted by CAP method is about 10km, the focal depth from sPL phase is about 10km, and the focal depth from Rayleigh surface wave amplitude spectrum is about 9~10km. Finally, we confirmed that the focal depth of Cangwu MS5.4 earthquake is about 10km, which indicates that this earthquake still occurred in the upper crust. In the case of low network density, the sPL phase and Rayleigh wave amplitude spectrum recorded by only 1 or 2 broadband stations could be used to obtain more accurate focal depth. The focal depth's accuracy of Cangwu MS5.4 earthquake in the USGS global earthquake catalog has yet to be improved. In the future, we should consider the error of the source parameters when using the USGS global earthquake catalog for other related research.  相似文献   

3.
Northwest Guangxi is located in the Youjiang fold belt and the Hunan-Guangxi fold belt of secondary structure unit of South China fold system. The South China fold was miogeosyncline in the early Paleozoic, the Caledonian fold returned and transformed into the standard platform, and the Indosinian movement ended the Marine sedimentary history, which laid the basic structural framework of this area. Since the neotectonic period, large areas have been uplifted intermittently in the region and Quaternary denudation and planation planes and some faulted basins have been developed. Affected by the strong uplift of Yunnan-Guizhou plateau, the topography of the region subsides from northwest to southeast, with strong terrain cutting and deep valley incision. Paleozoic carbonate rocks and Mesozoic clastic rocks are mainly exposed on the earth's surface, and its geomorphology is dominated by corrosion and erosion landforms. The dating results show that most of the structures in northwest Guangxi are middle Pleistocene active faults, and the movement mode is mainly stick-slip. According to the seismogeological research results of the eastern part of the Chinese mainland, the active faults of the middle Pleistocene have the structural conditions for generating earthquakes of about magnitude 6. In the northwest Guangxi, the crustal dynamic environment and geological structure are closely related to Sichuan and Yunnan regions. Under the situation that magnitude 6 earthquakes occurred successively in Sichuan and Yunnan region and magnitude 7 earthquakes are poised to happen, the risk of moderately strong earthquakes in the northwest Guangxi region cannot be ignored. Based on the analysis of deep structure and geophysical field characteristics, it is concluded that the Tian'e-Nandan-Huanjiang area in the northwestern Guangxi is not only the area with strong variation of the Moho surface isobath, but also the ML3.0 seismic gap since September 2015, and the abnormal low b value area along the main fault. Regions with these deep structural features often have the conditions for moderately strong earthquakes. The paper systematically analyzes the spatial and temporal distribution features and mechanism of regional gravitational field and horizontal crust movement and further studies and discusses the changes of regional gravitational field, crustal horizontal deformation and interaction between geologic structure and seismic activity based on 2014-2018 mobile gravity measurements and 2015-2017 GPS observation data in the northwestern Guangxi. The results show that:1)On July 15, 2017, a MS4.0 earthquake in Nandan happened near the center of four quadrants of changes of gravity difference, and the center of abnormal area is located at the intersection of the Mulun-Donglang-Luolou Fault, the Hechi-Nandan Fault and the Hechi-Yizhou Fault. The dynamic graph of differential scale gravitational field reflects the gravity changes at the epicenter before and after the Nandan earthquake, which is a process of system evolution of "local gravity anomaly to abnormal four-quadrant distribution features → to earthquake occurring at the turning point of gravity gradient zone and the zero line to backward recovery variation after earthquake". Meanwhile, according to the interpretation of focal mechanism of the Nandan earthquake, seismogram and analysis of seismic survey results, the paper thinks that the four-quadrant distribution of positive and negative gravity, which is consistent with the effect of strike-slip type seismogenic fault before Nandan earthquake, demonstrates the existence of dextral strike-slip faulting; 2)The pattern of spatial distribution of gravitational field change in northwestern Guangxi is closely related to active fault. The isoline of cumulative gravity generally distributes along Nandan-Hechi Fault and Hechi-Yizhou Fault. The gravity on both sides of the fault zone is different greatly, and gradient zone has influences on a broad area; the spatial distribution of deformation field is generally featured by horizontal nonuniformity. Tian'e-Nandan-Huanjiang area is located at the high gradient zone of gravity changes and the horizontal deformation surface compressional transition zone, as well as near the intersection of Hechi-Yizhou Fault, Hechi-Nandan Fault and Du'an-Mashan Fault; 3)The geometric shape of gravitational field in northwestern Guangxi corresponds to the spatial distribution of horizontal crustal movement, which proves the exchange and dynamic action of material and energy in the region that cause the change and structural deformation of fault materials and the corresponding gravity change on earth's surface. The recent analysis of abnormal crustal deformation in northwestern Guangxi shows that Tian'e-Nandan-Huanjiang is a gradient zone of abnormal gravity change and also a horizontal deformation surface compressional transition zone. It locates at the section of significant change of Moho isobaths, the seismicity gap formed by ML3.0 earthquakes and the abnormal low b-value zone. According to comprehensive analysis, the region has the risk of moderately strong earthquake.  相似文献   

4.
The Hutubi MS6.2 earthquake of December 8, 2016 is a pure thrust event in the northern Tianshan thrust fold belt. The earthquake occurred between the Qigu Fault and the Junggar southern margin fault, which are both thrust faults. Based on mobile gravity measurements from 2013 to 2018 in the northern Tianshan, the gravity net adjustment was accomplished using Urumqi absolute gravity observation point as the datum, and the absolute gravity value of surface observation points were obtained. In order to eliminate the seasonal effect on gravity variation, the paper uses the observation data in May per annual as studying objects and obtains the temporal-spatial dynamic evolution images of gravity field differences in the northern Tianshan at different time scales as well as the time series of gravity variation of some points in the adjacent area of the epicenter. The characteristics of regional gravity variation before and after the Hutubi MS6.2 earthquake on December 8, 2016 and their relations are analyzed systematically. The results show that: 1)The gravity variations in the study area are dramatic in generally, and the contours of gravity variation are consistent with the main faults basically. There was a four-quadrant distribution near the epicenter before the earthquake, and the Hutubi MS6.2 earthquake occurred near the center of the four-quadrant distribution and at the turn of the gravity variation contour. The three years' cumulative gravity variation before the earthquake and the gravity variation after the earthquake are inversed, and the variation amplitudes are equivalent, suggesting that the MS6.2 earthquake has released the stress and the energy accumulated before the earthquake. 2)This paper focuses on the analysis of gravity variation at the observation points on both sides of the Junggar southern margin fault near the epicenter. Regional gravity variation and gravity time series show that gravity variations at the same side of the Junggar southern margin fault are basically consistent, however, gravity variations at the different sides of the Junggar southern margin fault are different from each other obviously, indicating the difference of material migration laws in different structural regions. In addition, the strain energy accumulated in the epicenter is basically released after the earthquake, and the area nearby the epicenter tends to be stable. 3)The Hutubi MS6.2 earthquake occurred near the center of the four-quadrant and at the turn of the high-gradient zone of gravity variation, reflecting the location of strong earthquake is related to the distribution of four-quadrant of regional gravity variation, the high-gradient zone of regional gravity variation and its turn. It has a unique advantage in determining the location of strong earthquake using gravity variation results. The regional spatial-temporal gravity variation before the earthquake is manifested as a systematic evolution process of “steady state→regional gravity anomaly→four-quadrant distribution→earthquake occurring in the reverse process”. Studying the temporal-spatial evolution characteristics of gravity field before and after Hutubi MS6.2 earthquake has important practical significance for understanding the occurrence law of large earthquakes and capturing the precursory information of earthquakes.  相似文献   

5.
Longmenshan fault zone is a famous orogenic belt and seismic zone in the southeastern Tibetan plateau of China. The Wenchuan MS8.0 earthquake on May 12, 2008 and the Ya'an MS7.0 earthquake on April 20, 2013 occurred in the central-southern part of Longmenshan fault zone. Because of its complex geological structures, frequent earthquakes and special geographical locations, it has attracted the attention of many scholars around the world. Satellite gravity field has advantages in studying gravity field and gravity anomaly changes before and after earthquake. It covers wide range, can be updated regularly, without difficulty in terms of geographical restrictions, and is not affected by environmental factors such as weather, terrain and traffic. Therefore, the use of high-precision Earth satellite gravity field data inversion and interpretation of seismic phenomena has become a hot topic in earth science research. In order to understand satellite gravity field characteristics of the Longmenshan earthquake zone in the southeastern Tibetan plateau and its seismogenic mechanism of earthquake disasters, the satellite gravity data was used to present the terrain information of the study area. Then, by solving the regional gravity anomaly of the Moho surface, the crustal thickness of the study area was inverted, and the GPS velocity field data was used to detect the crustal deformation rate and direction of the study area. Combining the tectonic setting of the Longmenshan fault zone and the existing deep seismic sounding results of the previous researchers, the dynamic characteristics of the gravity time-varying field after the earthquake in the Longmenshan earthquake zone was analyzed and the mechanism of the earthquake was explored. The results show that the eastward flow of deep materials in the eastern Tibetan plateau is strongly blocked at the Longmenshan fault zone. The continuous collision and extrusion process result in a "deep drop zone" in the Moho surface, and the long-term stress effect is conducive to the formation of thrust-nappe and strike-slip structures. The Longmenshan earthquake zone was in the large-scale gradient zone of gravity change before the earthquake, the deep plastic fluid material transport velocity differed greatly, the fluid pressure was enhanced, and the rock mechanical strength in the seismic source region was weakened, which contributed to the intrusion of crustal fluid and the upwelling of the asthenosphere. As a result, the continuous accumulation of material and energy eventually led to continuous stress imbalance in the deep part and shear rupture of the deep weak structure, causing the occurrence of the thrust-nappe and strike-slip earthquake.  相似文献   

6.
On July 31st, 2016, an earthquake of MS5.4 occurred in Cangwu County, Guangxi Zhuang Autonomous Region, which is the first MS ≥ 5.0 earthquake in coastal areas of southern China in the past 17a. The moderate earthquake activities have come into a comparatively quiet period in coastal areas of southern China for decades, so the study about the Cangwu MS5.4 earthquake is very important. However, differernt research institutions and scholars have got different results for the focal depth of the Cangwu MS5.4 earthquake. For this reason, we further measured the focal depth by using CAP method and sPL phase method. sPL phase was first put forward by Chong in 2010. It is often observed between P and S wave of continental earthquakes with epicentral distance of about 30km to 50km. The energy of sPL phase is mainly concentrated on the radial component. Arrival time difference between sPL phase and direct P wave is insensitive to epicentral distancs, but increases almost linearly with the increase of focal depth. Based on these characteristics and advantages, sPL phase method is chosen to measure the focal depth of Cangwu MS5.4 earthquake in the paper. First of all, we selected the broadband waveform data through seismic stations distributed mainly in Guangxi and adjacent provinces from Data Management Centre of China National Seismic Network and Guangxi Earthquake Networks Center. And an appropriate velocity model of Cangwu area was constructed by the teleseismic receiver function method. Then, the focal mechanism and focal depth of Cangwu MS5.4 earthquake were determined by using the CAP(Cut and Paste)method. Next, we compared the synthetic waveforms simulated by F-K forward method of different focal depth models with the actual observed waveforms. According to the difference of arrival times between sPL and Pg phases, we finally obtained the focal depth of Cangwu earthquake. The results show that the focal depth is 11km measured by CAP method and 9km by sPL phase method. Based on the focal mechanism solution, isoseismal shapes, aftershocks distributions and investigation on spot, we conclude that the Cangwu MS5.4 earthquake is a left-lateral strike-slip earthquake which occurred in the upper crust. Our preliminary analysis considers that the seismogenic structure of Cangwu earthquake is a north-northwest branch fault, and the control fault of this earthquake is the Hejie-Xiaying Fault.  相似文献   

7.
利用江苏重力测网2014-2017年重力场观测资料,采用绝对重力控制与相对重力联测相结合的平差方法,获取2016年射阳MS 4.4地震前后重力场变化图。根据射阳MS 4.4地震前后射阳地区各测线重力段差变化特点,绘制重力场等值线并进行对比分析,结合相关机理,探讨重力场变化与该地震的内在联系。同震观测数据显示:射阳MS 4.4地震发生在重力异常值高梯度带附近,发震时震中地区位于NS挤压正异常、EW张拉负异常状态,震后区域重力梯度变化量开始减小,是一种典型的重力异常调整现象。  相似文献   

8.
2014年11月22日16时55分在四川省甘孜藏族自治州康定县发生的6.3级地震,结束了鲜水河断裂带近30多年以来没有较大地震发生的历史,其潜在的地震危险性再次引起国内外地学工作者的关注.为了研究鲜水河断裂带南东段深部孕震环境和探求康定MS6.3地震的成因,本文先利用四川区域数字地震台网和康定地区及周边所布设的流动地震台阵在2009年1月1日至2014年12月5日期间所记录到7397次区域地震事件的99287条P波到时资料,反演得到了鲜水河断裂带南东段上地壳范围内不同深度的三维P波速度结构特征;再对康定震区及周边的重力、航磁数据进行视密度、视磁化强度反演,得到了壳内不同深度密度的横向变化信息和视磁化强度的分布特征;在此基础上综合研究鲜水河断裂带南东段的深部孕震环境.研究结果表明,雅江—九龙一带的低速区与泸定—宝兴高速区的速度结构特征表明了鲜水河断裂带南东段两侧壳内物质存在显著的横向介质差异,康定MS6.3地震发生在该高低速异常区的分界线上;结合康定MS6.3地震的1028个余震序列的精确定位结果可以看出,重新定位后的余震沿着鲜水河断裂带南东段呈条带状分布,且震源深度优势分布层位深度为8~15km,该余震序列的空间分布特征与鲜水河断裂南东段的深部介质条件密切相关.鲜水河断裂带南东段特有的视密度和视磁化强度异常分布特征反映了康定地区东西两侧块体的基底性质存在明显差异,康定—石棉及其以东地区所表现出的磁异常高和重力高的位场特征,反映该区域由强磁性、高密度物质组成,而康定MS6.3地震就发生在康定—石棉重力梯度变化带上、雅安—泸定磁性穹窿区的西边界线上.随着川青块体向南东方向滑移,受到四川盆地西缘边界刚性基底对川青块体的强烈阻挡,加剧了康定—石棉及其以东地区基底岩层的褶皱变形并产生了强烈的应力积累,所积累的应力突然释放导致了康定MS6.3地震的发生,这正是此次鲜水河断裂带南东段康定地区强震孕育和发生的深部构造环境和介质特征.根据本文对鲜水河断裂带南东段深部孕震环境的综合研究成果可知,石棉段处于重磁异常梯级带上且其北东侧表现出的高密度、强磁性和高波速等物性特征有利于区域应力的相对集中,因此,鲜水河断裂带南东段石棉地区的地震活动趋势和地震危险性背景值得进一步关注和研究.  相似文献   

9.
Xianshuihe Fault, a main strong earthquake activity belt in southwest China, begins from Ganzi in the northwest, passes through Luhuo, Daofu, and Kangding, and then extents along the Dadu River valley. The fault is divided into two parts at Shimian, one part turns to south and converses to Anninghe Fault extending further to south, the other part, continuing to extend to southeast, cutting through Xiaoxiangling and then changing to Daliangshan Faults in the north of the Yuexi Basin, has the length of about 400km. Since 1700AD, there have happened 22 earthquakes larger than magnitude 6.0 and 8 earthquakes larger than magnitude 7.0. In this paper, we systematically collated and computed the gravity repetition measurement data along the Xianshuihe fault zone since 1988, and by referring to the anomaly index of gravity field of the predecessor achievements, analyzed the spatial-temporal variation of the regional gravity field and the relation to the occurrence of ≥ MS5.0 earthquakes. The mechanism of the regional gravity changes is further studied, and also the implication of strong earthquake risk because of the dynamic variation of gravity field in the near future is discussed.The results show that:1)The mobile gravity observation has the ability to detect crustal activity and MS ≥ 5.0 earthquake events. 2)There is definite correspondence between interannual gravitational field change and the 8 earthquakes among the 13 MS ≥ 5.0 earthquakes occurring in the surveying area since 1988, which can be determined according to the change of interannual gravitational field. Three M ≥ 6.0 earthquakes occurred 3~4 years after the abnormal image was developed, 4 earthquakes that occurred in the region of no data available were not determined. 3)A significant feature of the spatial-temporal variation of the regional gravity is a north-south run-through image before 2004, and characterized by the alternatively positive or negative variation in different year, the earthquakes of MS ≥ 5.0 occurring in this period were not distributed along the fault. Gravity variation magnitude indicates that there were two similar crustal material movement waves before 2004, corresponding to the course of earthquake space-time distribution from strong to weak in the study area. After 2010, the variation image shows that the local positive and negative zones are concurrent within a year, different from the image before 2004, and earthquakes of MS ≥ 5.0 basically occurred on the fault. It is believed that the variation of gravity field since 1988 and the seismic distribution fit with the geodynamic mode of strong and weak stages of the northeast motion of Indian plate. According to the conclusion we can try to optimize gravity anomaly index. After the Kangding earthquake in 2014, the north segment of Moxi Fault was still subject to negative high value changes till 2017 and then the gravity variation was further developed to a four quadrant distribution image. Based on the analysis of this paper and the previous variation trend of gravity field, we believe that the north segment of Moxi Fault has the background of medium-long term, strong or large earthquake risk.  相似文献   

10.
On July 31th, 2016, a moderately strong earthquake of MS5.4 hit the Cangwu County in Guangxi Zhuang Autonomous Region. The focal depth of this earthquake is about 10 kilometers. This earthquake occurred in the junction area of Guangxi Zhuang Autonomous Region, Hunan Province and Guangdong Province. Nanning, Guangzhou, Shenzhen and other cities felt this earthquake. The Cangwu County disaster area is unique in terms of geographical position, tectonic geology, landform, economic development situation, population distribution and climate condition, etc. Based on the investigation to the earthquake hit area, and the analysis of its special natural environment, social economical conditions and humanities, seven general disaster characteristics of the Cangwu MS5.4 earthquake are summarized from the point of view of earthquake disaster emergency rescue and reconstruction. namely, the low population density in the disaster area, the single building structure type and the low-level economic development, the short duration of ground motion, the small number and low magnitude of aftershocks, no large landslide, debris flow and other secondary geological disasters caused by this earthquake, the area is prone to typhoon and other climate disasters which are likely to aggravate earthquake disaster, and the earthquake occurred in an area of weak seismicity in South China. This paper introduces the basic situation of the MS5.4 Cangwu earthquake and analyzes the seven disaster characteristics of this earthquake. In order to better respond to moderate-strong earthquake in weak seismicity regions of South China, this paper summarizes some experience and revelations about the earthquake in the MS5.4 Cangwu earthquake emergency response process, and puts forward some corresponding countermeasures of earthquake disaster reduction in weak seismicity regions in southern China. In the future work, we should pay more attention to pre-disaster prevention, and strengthen earthquake-monitoring capability. In order to reduce the casualties caused by collapse of houses, we should improve the seismic fortification standards of houses, carry out relevant researches on earthquake damage prevention measures of karst areas. And in order to carry out comprehensive disaster reduction, we should strengthen cooperation with the meteorological department, and carry out more comprehensive earthquake emergency drills.  相似文献   

11.
2016年7月31日苍梧MS 5.4地震的发生,标志着东南沿海地震带第5活跃幕的开始。通过该地震序列、震源机制、强震动记录、地震地质背景,地震灾害及震前异常变化,分析此次MS 5.4地震活动及震害特征,为广西地区强震震后趋势判断、强震响应提供依据,并对地震前后采用的应急对策及发挥的作用进行论述。  相似文献   

12.
2016年1月21日01时13分在青海省海北州门源县发生了MS6.4地震,震中位置位于青藏高原东北缘地区祁连造山带内的祁连—海原断裂带冷龙岭断裂部分附近,震源深度约11.4 km,震源机制解显示该次地震为一次纯逆冲型地震.我们于2015年7—8月期间完成了跨过祁连造山带紧邻穿过2016年1月21日青海门源MS6.4地震震中区的大地电磁探测剖面(DKLB-M)和古浪地震大地电磁加密测量剖面(HYFP).本文对所采集到的数据进行了先进的数据处理和反演工作,获得了二维电性结构图.结合青藏高原东北缘地区最新获得的相对于欧亚板块2009—2015年GPS速度场分布特征,1月21日门源MS6.4地震主震与余震分布特征以及其他地质与地球物理资料等,探讨了门源MS6.4地震的发震断裂,断裂带空间展布、延伸位置,分析了门源MS6.4地震孕震环境与地震动力学背景等以及祁连山地区深部构造特征等相关问题.所获结论如下:2016年门源MS6.4地震震源区下存在较宽的SW向低阻体,推测冷龙岭断裂下方可能形成了明显的力学强度软弱区,这种力学强度软弱区的存在反映了介质的力学性质并促进了地震蠕动、滑移和发生;冷龙岭北侧断裂可能对门源MS6.4地震主震和余震的发生起控制作用,而该断裂为冷龙岭断裂在青藏高原北东向拓展过程中产生的伴生断裂,表现出逆冲特征;现今水准场、重力场、GPS速度场分布特征以及大地电磁探测结果均表明祁连—海原断裂带冷龙岭断裂部分为青藏高原东北缘地区最为明显的一条边界断裂,受控于青藏高原北东向拓展和阿拉善地块的阻挡作用,冷龙岭断裂附近目前正处于青藏高原北东向拓展作用最强烈、构造转化最剧烈的地区,这种动力学环境可能是门源MS6.4地震发生的最主要原因,与1927年古浪MS8.0地震和1954年民勤MS7.0地震相似,2016年门源MS6.4地震的发生同样是青藏高原北东向拓展过程中的一次地震事件.  相似文献   

13.
依据EIGEN-6C4重力模型和ETOPO1高程模型数据,围绕新疆精河6.6级地震展开岩石圈均衡与挠曲机理研究,得到如下结论:(1)震中附近的布格与自由空气重力异常分别为-221和-92mGal(10~(-5 )m·s~(-2)),震中位于重力异常高梯度带上;(2)震中周边地区地壳厚度约为50km,密度结构总体变化平缓,东西方向地壳厚度变化较小,但自南向北地壳厚度逐渐变薄,精河6.6级地震初始破裂发生在上中地壳分界面附近;(3)震中附近岩石圈承载的垂向构造应力为20MPa左右,震中位于岩石圈垂向构造应力极大值附近的高梯度带上;(4)地震周边地区岩石圈有效弹性厚度最优解为26km,加载比最优解为F_1=1,F_2=F_3=0,表明该区域岩石圈相对坚硬,且导致岩石圈变形的初始加载全部来自地表.  相似文献   

14.
利用青藏高原东北缘2011-2015年期间的流动重力观测资料,系统分析了区域重力场变化及其与2016年1月21日青海门源MS6.4地震发生的关系,结合GNSS、水准观测成果和区域地质构造动力环境,进一步研究了区域重力场变化的时空分布特征及其机理.结果表明:(1)测区内重力场异常变化与祁连山断裂带在空间上关系密切,反映沿祁连山断裂带(段)在2011-2015年期间发生了引起地表重力变化效应的构造活动或变形.(2)门源MS6.4地震前,测区内先出现了较大空间范围的区域性重力异常,到临近发震前显示出相对闭锁的现象,且围绕震中区周围出现四象限分布特征的局部重力变化,地震发生在重力反向变化过程中,并出现显著的四象限分布特征的重力异常变化,其中,青海门源与甘肃天祝一带重力差异变化达100×10-8m·s-2以上.(3)区域重力场动态演化大体反映了青藏高原东北缘物质北东流的动态效应,门源震中附近区域地壳受挤压变形显著、面压缩率和重力剧烈变化的特征最为显著.(4)重力场的空间分布及其随时间变化与地壳垂直与水平运动及地质构造活动等观测结果有一定的对应关系,强震易发生在重力变化四象限分布中心地带或正、负异常区过渡的高梯度带上.  相似文献   

15.
陈兆辉  陈石  张双喜  刘金钊 《地震》2021,41(1):25-39
本文基于EGM2008重力场模型研究了青藏高原东南缘均衡重力异常和多尺度的布格重力异常特征, 以鲁甸和景谷地震为例, 认识其深部构造环境和动力学过程, 为该区域的构造运动和地震孕育环境研究提供依据。 结果表明, 研究区布格重力异常和均衡重力异常与地质构造格局相关性较好, 川滇地块剧烈的区域布格重力异常和非均衡状态与其强烈的地壳变形、 断裂及地震活动密切相关。 强震多分布在断裂带两侧重力异常的过渡地带和高梯度带, 断裂带两侧横向和垂向的显著介质密度差异是强震孕育的深部构造背景。 布格重力异常和均衡重力异常揭示的鲁甸、 景谷震源区深浅差异性的重力异常特征, 暗示鲁甸和景谷地震孕震环境的不同。  相似文献   

16.
The main rupture of Ludian MS6.5 earthquake is directed to the northwest, which occurred in the east of Xianshuihe-Xiaojiang fault zone. The epicenter is in the transitional zone of the Sichuan-Yunnan block and the South China block, where there are many slip and nappe structures. Some controversy still remains on the earthquake tectonic environment. So, Bouguer gravity anomalies calculated by EGM2008 were broken down into 1-5 ranks using the way of Discrete Wavelet Transform(DWT), then we get the lateral heterogeneity in different depths of the crust. The distribution characteristics of Bouguer gravity anomaly are analyzed using measured gravity profile data. We also get its normalized full gradient(NFG)picture, and study the differences between different depths in crust. The results show that: (1)the characteristic of Buoguer gravity anomaly in southwest to northeast is high-low-high between the Lianfeng Fault(LFF)and Zhaotong-Ludian Fault(ZLF). The mainshock and aftershocks are distributed in the middle of the low-value zone, which means that the east moving materials of Qinghai-Tibet plateau broke through the southern section of Lianfeng Fault(LFF), moving along the Baogunao-Xiaohe zone(low-value belt)to the southeast, stopped by the Zhaotong-Ludian Fault(ZLF), and then earthquake occurred.(2)The third-order discrete wavelet transform(DWT)details show that: there is a good consistency between the negative gravity anomaly in upper crust and the distribution of major faults, which reflects that the rupture caused by the movements of the faults in crust has reduced gravity anomaly. There is a NW-trending negative anomaly belt near the epicenter, which may has some relationship to the southward development of the Daliangshan Fault(DLSF). So we speculate that the southward movement of Daliangshan Fault is the main direct force source of Ludian earthquake.(3)In the picture of the fourth-order DWT details, there is an obvious positive gravity anomaly under the epicenter of Ludian earthquake, which confirms the presence of a high-density body in the middle crust. While the fifth-order DWT details show that: A positive anomaly belt is below the epicenter too, which may be caused by mantle material intruding to the lower crust. Tensile force in crust caused by mantle uplift and extrusion-torsion force caused by Indian plate push are the main force source in the tensile and strike slip movement of the Ludian earthquake.(4)The normalized total gradient of Bouguer gravity anomalies of Huili-Ludian-Zhaotong profile shows that: there is obvious ‘deformation’ in the Xiaojiang fault zone which dips to the east and controls the local crust movement. There is a local ‘constant body’ at the bottom of the epicenter. The stable constant body in density has limiting effects to the earthquake rupture, which is the reason that the earthquake rupture' scale in strike and in depth are limited.(5)The ability of earthquake preparation in Zhaotong-Ludian Fault is lower than the Xianshuihe-Xiaojiang fault zone, and the maximum earthquake capacity in this area should be around magnitude 7.  相似文献   

17.
首先对具有代表性的重力异常分离方法进行简单介绍, 在此基础上使用这些方法对同一组理论模型数据进行试验, 优选出异常分离效果较好的优化滤波法对芦山地震震区重力异常特征进行分析, 初步认识此次地震发生的深部构造背景, 得出以下初步结论: 龙门山断裂带在研究区布格重力异常中反映为一条近北东走向的显著重力梯度带. 该梯度带在天全附近分为两支, 芦山地震震区靠近重力梯度带分叉处, 且MS≥3.0余震同样呈近北东向展布, 与梯度带走向基本一致, 认为此次强地震的发生与重力梯度带下的深部结构及构造活动密切相关; 芦山地震震区浅部结构与深部构造特征存在较大差异, 构造复杂及地壳深浅部耦合关系较差, 说明此次强地震的发生受浅部和深部构造的共同控制.   相似文献   

18.
利用南北地震带2014-2017年期间的流动重力观测资料,系统分析了区域重力场变化及其与2017年8月8日四川九寨沟7.0级地震发生的关系.结果表明:①区域重力场异常变化与北西西向塔藏断裂和南北向岷江断裂带在空间上关系密切,反映了沿控震断裂在2013-2017年期间发生了引起地表重力变化效应的地壳变形和构造活动.②九寨沟地震前,测区内出现了大空间范围的区域性重力异常,而震源区附近产生了局部重力异常,沿塔藏断裂带形成了重力变化高梯度带,其中,甘肃玛曲、迭部、青海河南蒙古族自治县、四川若尔盖、九寨沟一带重力差异变化达100×10-8m·s-2以上;这些可能反映九寨沟地震前,区域及震源区附近均产生与该地震孕育、发生有关的构造运动或应力增强作用.③九寨沟地震震中位于重力差异运动剧烈的鞍部等值线附近,与断裂走向基本一致的重力变化高梯度带零值线上,这一观测事实进一步佐证了重力场动态变化图像对强震地点预测具有重要的指示意义.  相似文献   

19.
北京时间2019年6月17日22时55分,四川省宜宾市长宁县发生了MS6.0地震(28.34°N,104.90°E),四川盆地内部及边缘地带的深部孕震环境和潜在地震危险性再次引起了国内外地震专家和学者们的密切关注.为了揭示长宁MS6.0震区的深部介质结构特征和孕震环境,综合解译地震活动的构造背景和展布特征,本文充分收集川东南宜宾长宁地震震区及其周边范围内由四川省数字测震台网、宜宾市地方测震台网以及2016年以后宜宾长宁地区新增小孔径流动地震台阵等共计35套观测地震设备2013年1月—2019年7月记录到的17305次地震的P波到时资料的数据,应用双差地震层析成像方法,反演得到了长宁震区及周边上地壳三维P波速度结构特征,并结合此次震后科考组在震区获取的三维大地电磁阵列测深和重力密集测量等最新观测资料,综合分析讨论了长宁震区速度结构特征与地震活动关系、孕震环境及其地震危险性等科学问题.研究结果表明:长宁震区及周边上地壳P波速度结构呈现出明显的横向不均匀性,震区沉积盖层的物性特征分异明显,双河场背斜褶皱北西侧的波速结构与其东部存在明显的差异性且浅层P波速度结构分布特征与地表地质构造和地层岩性密切相关.重新定位后的长宁MS6.0地震序列空间分布特征与震区上地壳介质速度结构存在密切关系,序列大体上沿着高低速异常分界线呈NW-SE向展布,并终止于白象岩—狮子滩背斜构造东段附近,长宁震区及周边介质速度结构的非均匀变化是控制主震及其序列空间展布的深部构造因素.三维P波速度结构还表明了长宁MS6.0震区双河场褶皱附近存在不一样的深浅构造背景,震区褶皱构造伴生断裂的复杂性可能破坏了盖层地层成层性,造成了介质物性界面的变化多样,从而导致深浅构造耦合存在明显的差异.长宁MS6.0地震震中位于速度结构发生变化的边界带附近,这种介质物性变化的边界带可能是中强地震孕育和发生的有利部位.长宁MS6.0地震及其序列绝大部分发生在基底滑脱带之上,由于受到区域NE-SW向主压应力和经华蓥山构造带传递而来的NW-SE向的现今应力场的共同作用,导致了此次长宁6.0级地震的发生,而随后发生的珙县MS5.1、长宁MS5.3、珙县MS5.4和MS5.6地震以及大量中小地震事件均为长宁6.0级地震触发作用所致.P波速度结构还揭示了震区双河场褶皱以及该褶皱构造地表出露伴生的大地湾断层和NW向大佛崖断层两侧浅层速度结构特征各异,结合长宁—双河背斜与轴线方向一致的NW向伴生断裂构造比较发育,而褶皱东侧的伴生断裂走向表现出多样性和复杂性,由此推断除了受区域性构造运动的影响之外,长宁震区局部构造的差异性活动也较为突出,长宁—双河背斜构造区轴部构造及其伴生的断裂具备一定的发震能力和深部孕震背景,这可能也是长宁地震余震强度较大、活动持续时间较长的主要原因,川东南地区地震活动趋势和潜在地震危险性仍值得进一步关注.  相似文献   

20.
In this paper, according to the synthetic gravity anomaly of a horizontally infinite cylindrical geologic body, gravity gradient in horizontal direction was calculated by potential field discrete cosine transformation in frequency domain. In the calculation, the minimum curvature method was used to extend edge lines. We found that the gravity gradient field from the potential field transformation was dependable by comparison with synthetic gravity gradient, except the data in the edges. Then, the accumulative horizontal gravity gradients before Lushan MS7.0 earthquake were calculated for the accumulative gravity anomaly from September 2010 to October 2012. In the north-south direction, gravity gradient in Daofu-Kangding-Shimian and Markang-Lixian-Lushan exhibited a positive high value, and the strike of the high value zone was in line with the strike of Xianshuihe Faults and Markang Faults. In the east-west direction, high value zone was not as obvious as that in the north-south direction. Gravity gradients in the direction along and vertical to the strike of Longmenshan Faults were calculated by the definition of directional derivative. In the along-strike direction, high gravity gradient values appeared in Markang-Lixian areas along Markang Faults and Daofu-Kangding-Shimian areas along Xianshuihe Faults, and extremum appeared in Kangding-Shimian and the area nearby Lixian. In the direction vertical to the strike of Longmenshan fault zone, high gravity gradient values appeared in Lixian-Lushan-Kangding-Shimian areas, and the extremum appeared in the area nearby Kangding. The results indicate that gravity gradient in the direction along and vertical to the strike of faults can better show the relative gravity change on the two sides of faults. Lushan MS7.0 earthquake is located at the transition zone between the two high value zones of gravity gradient. The total horizontal gravity gradient shows that the location and strike of the high value zone are basically consistent with regional faults, and the extremums of total horizontal gravity gradient appeared nearby Lixian, Kangding and Shimian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号