首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
介绍了皖南地区区域地震台网20个测震台站的基本情况。对20个台站的背景噪声数字化记录进行了计算和分析,得其背景噪声均方根RMS值、有效测量动态范围,分析了噪声水平并按照地噪声水平的规定对各台进行了台基噪声分类。结果表明,20个测震台站中有9个I类台址、9个Ⅱ类台址、2个Ⅲ类台址。同时,分析了皖南地区区域台网的最小监测能力,结果表明,皖南地区区域台网最小监测能力为M_L≥-0.1—0.6,台站监测能力基本满足皖南地区监测需求。  相似文献   

2.
通过对黑龙江省测震台站台基背景噪声数据的计算和分析,得到当前各参评台站台基背景噪声地动速度均方根值(RMS)、台基噪声等级以及有效测量动态范围,并对存在突出问题的PSD曲线进行分析。通过计算各台站功率谱密度,得出台站在不同频段受干扰的情况。分析认为,黑龙江省29个台站环境地噪声水平为Ⅰ级,碾子山地震台环境地噪声水平为Ⅱ级(受当地采矿业机械震动影响),七台河地震台环境地噪声水平为Ⅳ级;除七台河地震台观测动态范围小于130 dB,其他台站均大于130 dB。  相似文献   

3.
山西数字遥测地震台网十五勘选子台台址地动噪声分析   总被引:2,自引:1,他引:2  
对山西数字遥测台网“十五”勘选的19个子台台址背景噪声进行分析和计算,得出了各台址背景噪声地动速度均方根值(RMS值)、有效测量动态范围、噪声信号功率谱。结果表明,各台址背景噪声水平符合数字地震观测技术规范要求。  相似文献   

4.
山西数字遥测地震台网各子台台址地脉动噪声分析   总被引:4,自引:0,他引:4  
李媛媛  吴东 《内陆地震》2004,18(2):182-186
通过对山西数字遥测地震台网11个子台台址背景噪声进行分析和计算,得出了各台址背景噪声地脉动速度均方根值(RMS值)、观测动态范围、噪声信号功率谱。结果表明各台址背景噪声水平基本符合数字地震观测技术规范要求。  相似文献   

5.
介绍了山东数字地震台网基本情况,计算了40个测震台站台基背景噪声,利用Welch方法计算噪声功率谱密度(PSD),进而计算地震台台基1—20 Hz地动噪声均方根值(RMS)和有效动态观测范围。根据计算结果,依照《地震台站观测环境技术要求》,对山东测震数字台网40个参评测震台站进行背景噪声级别分类,并分析不同台站背景噪声水平较低的原因,以期为测震台网的优化建设提供数据支持。  相似文献   

6.
上海遥测台网各类型台基背景噪声分析   总被引:7,自引:0,他引:7  
本文通过对上海遥测台网各台址背景噪声数字化记录进行计算和分析,得到台址背景噪声地动速度均方根值(RMS)、有效测量动态范围、噪声信号功率谱结果.所得结果对上海市地震局“十二五”期间新建台站的各项指标设计,如台基选择、点位选择、仪器选型等提供非常有价值的理论依据;通过台址噪声分析可以为“十二五”期间主动震源技术发展和应用提供背景资料,即根据当地背景噪音幅度计算主动震源所需最低能量,同时主动震源振动频率尽量避开背景噪音的优势频率段,以获取最佳的观测数据,因此对数字地震台的台址噪声进行分析是一项有意义和重要的工作.  相似文献   

7.
乌鲁木齐区域数字遥测台网各子台背景噪声分析   总被引:6,自引:3,他引:6  
刘永廷  夏爱国  赵庆 《内陆地震》2002,16(4):366-371
选取乌鲁木齐区域数字遥测台网中 1 1个子台的背景噪声数字记录 ,计算并分析其背景噪声地动速度均方根值 RMS、有效测量动态范围以及噪声功率谱 ,最后确定出各台址背景噪声相对集中的频段  相似文献   

8.
应用PDF方法,计算了内蒙古现运行48个测震台站0.01~20 Hz频带范围内的功率谱密度(PSD)和1~20 Hz频带范围内噪声均方根(RMS)值,定量分析了内蒙古区域背景噪声水平。结果显示:平均噪声水平属于Ⅰ类的台站有45个,Ⅱ类有3个;台站背景噪声在1 Hz以上频段内,主要受公路和人为影响;在0.6~1 Hz频段内背景噪声水平差异较小;在低频段,水平向受温度和湿度影响大于垂直向,山洞台受影响小于地面台。  相似文献   

9.
阜新矿震台网子台地动噪声分析   总被引:1,自引:0,他引:1  
通过对辽宁省阜新矿业集团数字矿震监测台网4个子台台址背景噪声进行分析和计算,得出了各子台台址背景噪声功率谱密度曲线、噪声地动速度均方根值(RMS值)、有效测量动态范围。结果表明,各个子台的台址环境和观测仪器的性能良好,背景噪声水平符合中国地震局数字地震观测技术规范要求。  相似文献   

10.
基于北京市测震台网连续三分量地震计波形数据,计算28个测震台站台基噪声,利用Welch方法计算噪声功率谱密度(PSD),进而计算地震台台基1-20 Hz地动噪声均方根值(RMS)和观测动态范围。结果表明,依照《地震台站观测环境技术要求》,北京市测震台网中有11个Ⅰ类台、9个Ⅱ类台、6个Ⅲ类台、2个Ⅳ类台。通过分析北京市测震台网数字地震台背景噪声水平,为测震台网的规划建设提供数据支持。  相似文献   

11.
利用2020年5月1—7日乌加河地震台、乌力吉地震台波形数据,应用噪声功率谱概率密度(PDF)方法,计算2个台站的台基噪声,分析了2种观察环境下的台基噪声特征及影响因素。结果显示,在小于0.1 Hz频段乌力吉地震台台基噪声值明显大于乌加河地震台,说明地震计在小于0.1 Hz频段受环境温度影响的特征较显著;在大于1 Hz频段2个台站台基噪声值均有台阶性升高频段,这是由在该频段台基噪声受人为活动影响所致。  相似文献   

12.
2019年黑龙江省完成"一带一路"地震科学台阵项目中台址勘选工作,基于科学台阵中136个台址的地面运动噪声数据,通过计算不同频段范围内背景噪声记录的加速度功率谱密度,研究不同环境噪声下科学台阵记录数据的地噪声特征及其台基响应。结果表明:黑龙江西北和东南部地区地面运动噪声水平低,观测环境较好;中部和东北部地区噪声水平较高,大庆地区尤为严重。勘选结果真实反映了黑龙江区域内的背景噪声分布,使我们对本区域地噪声水平和干扰因素有了新的认识。  相似文献   

13.
利用Welch算法,选取北京市测震台网28个测震台站地震连续波形中不同时段的无震记录,计算其台基噪声功率谱并进行背景噪声特征的统计分析,结果表明:北京市测震台网各台基噪声背景优势频率各有特征,高低频段噪声功率谱曲线差异大。在1~20Hz频段内,北京地区的背景噪声高值区出现在中心城区附近,低值区出现在北部的琉璃庙、密云和南部的上方山等台站,主要受人为噪声影响;在0.008~0.1Hz频段内,北京所有地区差异不大。  相似文献   

14.
应用太原基准地震台和东山地震台2007年至今的数字化资料进行研究,得到太原台、东山台地脉动噪声RMS值和功率谱密度,及其相应的卓越周期,找出两个台主要干扰源的频带范围。另外,采用Matlab提供的FFT算法对整点地震记录进行频谱计算,对2010年6月5日发生的太原市阳曲Ms4.6地震前两个台记录的数字地脉动信号进行实时连续跟踪对比观测和试验,捕捉临震特殊频率波动现象,作为一种可能的"地震前兆"作探索性的研究。所得结果对去除数字地脉动信号背景干扰及分析预报工作具有借鉴作用。  相似文献   

15.
地震噪声异常实时监测   总被引:4,自引:0,他引:4  
本文采用福建省85个测震台站2012年全年噪声资料的垂直向记录作为研究对象,将噪声记录以每5min为单位进行分段,求出每小段的功率谱,应用概率分布函数方法绘出台站的PDF图,之后利用网格概率法确定出台站的高低噪声参照线。另外,根据85个台站的PDF图异常,将噪声异常分成四类:缺数异常、低噪处异常、高噪处异常、中噪处异常。依据四类异常的特征分别研究出四类异常的挑选方法,再将这四种挑选方法结合形成地震噪声实时监测系统。选取福建省85个测震台站2013年7月份的噪声记录进行验证,结果表明:85个台站应用地震噪声实时监测系统识别出来的异常正确率都达到90%以上,挑选效果很好,并可应用于台站噪声实时监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号