首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deformed metasedimentary bedrock and overlying diamictons in western Anglesey, NW Wales, record evidence of glacier-permafrost interactions during the Late Devensian (Weichselian). The locally highly brecciated New Harbour Group bedrock is directly overlain by a bedrock-rich diamicton which preserves evidence of having undergone both periglacial (brecciation, hydrofracturing) and glacitectonic deformation (thrusting, folding), and is therefore interpreted as periglacial head deposit. The diamicton locally posses a well-developed clast macrofabric which preserves the orientation of the pre-existing tectonic structures within underlying metasedimentary rocks. Both the diamicton and New Harbour Group were variably reworked during the deposition of the later Irish Sea diamicton, resulting in the detachment of bedrock rafts and formation of a pervasively deformed glacitectonite. These structural and stratigraphic relationships are used to demonstrate that a potentially extensive layer of permafrost developed across the island before it was overridden by the Irish Sea Ice Stream. These findings have important implications for the glacial history of Anglesey, indicating that the island remained relatively ice-free prior to its inundation by ice flowing southwards down the Irish Sea Basin. Palynological data obtained from the diamictons across Anglesey clearly demonstrates that they have an Irish Sea provenance. Importantly no Lower Palaeozoic palynomorphs were identified, indicating that it is unlikely that Anglesey was overridden by ice emanating from the Snowdon ice cap developed on the adjacent Welsh mainland. Permafrost was once again re-established across Anglesey after the Irish Sea Ice Stream had retreated, resulting in the formation of involutions which deform both the lower bedrock-rich and overlying Irish Sea diamictons.  相似文献   

2.
The Wicklow Trough is one of several Irish Sea bathymetric deeps, yet unusually isolated from the main depression, the Western Trough. Its formation has been described as proglacial or subglacial, linked to the Irish Sea Ice Stream (ISIS) during the Last Glacial Maximum. The evolution of the Wicklow Trough and neighbouring deeps, therefore, help us to understand ISIS dynamics, when it was the main ice stream draining the former British–Irish Ice Sheet. The morphology and sub-seabed stratigraphy of the 18 km long and 2 km wide Wicklow Trough is described here from new multibeam echosounder data, 60 km of sparker seismic profiles and five sediment cores. At a maximum water depth of 82 m, the deep consists of four overdeepened sections. The heterogeneous glacial sediments in the Trough overlay bedrock, with indications of flank mass-wasting and subglacial bedforms on its floor. The evidence strongly suggests that the Wicklow Trough is a tunnel valley formed by time-transgressive erosional processes, with pressurised meltwater as the dominant agent during gradual or slow ice sheet retreat. Its location may be fault-controlled, and the northern end of the Wicklow Trough could mark a transition from rapid to slow grounded ice margin retreat, which could be tested with modelling.  相似文献   

3.
This paper presents the results of a detailed study of a complex hydrofracture system and host diamictons exposed within a longitudinal section through an elongate drumlin located to the west of Cemlyn Bay, Anglesey, NW Wales. This complex, laterally extensive sand, silt and clay filled hydrofracture system was active over a prolonged period and is thought to have developed beneath the Late Devensian (Weichselian) Irish Sea Ice Stream as it overrode this part of NW Anglesey. The sediment-fill to the hydrofracture system is deformed with kinematic indicators (folds, thrusts, augen) recording a SW-directed sense of shear, consistent with the regional ice flow direction across this part of the island. The lack of any geomorphological evidence for active retreat of the Irish Sea ice across Anglesey has led to the conclusion that hydrofracturing at the Cemlyn Bay site occurred within the bed of the Irish Sea Ice Stream whilst this relatively faster flowing corridor of ice was actively overriding the island. Shear imposed by the overriding ice led to the development of a subglacial shear zone which facilitated the propagation of the hydrofracture system with the laterally extensive feeder sills occurring parallel to Y-type Riedel shears. Although a subglacial setting beneath the active Irish Sea Ice Stream can be argued for the Cemlyn Bay hydrofracture system, its relationship to the formation of the ‘host’ drumlin remains uncertain. However, evidence presented here suggests that hydrofracturing may have occurred during the later stages or post landform development in response to the migration of overpressurised meltwater within the bed of the Irish Sea ice; possibly accompanying the local thinning and shutdown of the Irish Sea Ice Stream on Anglesey.  相似文献   

4.
During decline of the last British–Irish Ice Sheet (BIIS) down‐wasting of ice meant that local sources played a larger role in regulating ice flow dynamics and driving the sediment and landform record. At the Last Glacial Maximum, glaciers in north‐western England interacted with an Irish Sea Ice Stream (ISIS) occupying the eastern Irish Sea basin (ISB) and advanced as a unified ice‐mass. During a retreat constrained to 21–17.3 ka, the sediment landform assemblages lain down reflect the progressive unzipping of the ice masses, oscillations of the ice margin during retreat, and then rapid wastage and disintegration. Evacuation of ice from the Ribble valley and Lancashire occurred first while the ISIS occupied the ISB to the west, creating ice‐dammed lakes. Deglaciation, complete after 18.6–17.3 ka, was rapid (50–25 m a?1), but slower than rates identified for the western ISIS (550–100 m a?1). The slower pace is interpreted as reflecting the lack of a calving margin and the decline of a terrestrial, grounded glacier. Ice marginal oscillations during retreat were probably forced by ice‐sheet dynamics rather than climatic variation. These data demonstrate that large grounded glaciers can display complex uncoupling and realignment during deglaciation, with asynchronous behaviour between adjacent ice lobes generating complex landform records.
  相似文献   

5.
This paper provides sedimentological and morphological data from an investigation of the Late Devensian glacigenic deposits along the Tyne valley, northeast England. The area lies in the central sector of the British-Irish Ice Sheet, with the lowlands influenced by both the Tyne Gap and Tweed-Cheviot ice streams. The sequences here provide insights into the existence of complex, multi-phase activity within the British-Irish Ice Sheet. Field mapping of the area reveals kamiform topography in the Tyne lowlands and lower South Tyne valley, whilst the mid Tyne is characterised by high-level sandur terraces. Inset below the glacial features are river terraces. The sedimentary sequence comprises diamicton overlain by gravel and sandy gravels; sands, muddy sands and gravels; laminated silty sands and muds; and well sorted sands and gravel. The depositional environments indicate ice-contact, subaqueous and terrestrial sedimentation, with supraglacial, proglacial, subaquatic and paraglacial landsystems. Following the onset of deglaciation, westward retreat of Tyne Gap ice resulted in land to the east and southeast of its margin becoming ice-free. Continued/renewed southward flow of ice along the North Sea coast formed a persistent barrier to sediment-charged meltwaters draining the Tyne Gap ice margin. The separation of these two ice masses allowed a glacial lake to develop in the lower Tyne fed by a large proglacial sandur system, which with ice marginal retreat subsequently merged with Glacial Lake Wear. The sediment sequences record the final waning of the Tyne Gap ice stream, and are contiguous with sediments that extend west through the Tyne Gap and into the Cumbrian lowlands.  相似文献   

6.
High-resolution seismic and bathymetric data offshore southeast Ireland and LIDaR data in County Waterford are presented that partially overlap previous studies. The observed Quaternary stratigraphic succession offshore southeast Ireland (between Dungarvan and Kilmore Quay) records a sequence of depositional and erosional events that supports regional glacial models derived from nearby coastal sediment stratigraphies and landforms. A regionally widespread, acoustically massive facies interpreted as the ‘Irish Sea Till’ infills an uneven, channelized bedrock surface overlying irregular mounds and deposits in bedrock lows that are probably earlier Pleistocene diamicts. The till is truncated and overlain by a thin, stratified facies, suggesting the development of a regional palaeolake following ice recession of the Irish Sea Ice Stream. A north–south oriented seabed ridge to the north is interpreted as an esker, representing southward flowing subglacial drainage associated with a restricted ice sheet advance of the Irish Ice Sheet onto the Celtic Sea shelf. Onshore topographic data reveal streamlined bedforms that corroborate a southerly advance of ice onto the shelf across County Waterford. The combined evidence supports previous palaeoglaciological models. Significantly, for the first time, this study defines a southern limit for a Late Midlandian Irish Ice Sheet advance onto the Celtic Sea shelf. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
The deglacial history of the central sector of the last British–Irish Ice Sheet is poorly constrained, particularly along major ice‐stream flow paths. The Tyne Gap Palaeo‐Ice Stream (TGIS) was a major fast‐flow conduit of the British–Irish Ice Sheet during the last glaciation. We reconstruct the pattern and constrain the timing of retreat of this ice stream using cosmogenic radionuclide (10Be) dating of exposed bedrock surfaces, radiocarbon dating of lake cores and geomorphological mapping of deglacial features. Four of the five 10Be samples produced minimum ages between 17.8 and 16.5 ka. These were supplemented by a basal radiocarbon date of 15.7 ± 0.1 cal ka BP, in a core recovered from Talkin Tarn in the Brampton Kame Belt. Our new geochronology indicates progressive retreat of the TGIS from 18.7 to 17.1 ka, and becoming ice free before 16.4–15.7 ka. Initial retreat and decoupling of the TGIS from the North Sea Lobe is recorded by a prominent moraine 10–15 km inland of the present‐day coast. This constrains the damming of Glacial Lake Wear to a period before ∼18.7–17.1 ka in the area deglaciated by the contraction of the TGIS. We suggest that retreat of the TGIS was part of a regional collapse of ice‐dispersal centres between 18 and 16 ka.
  相似文献   

8.
The Tyne Gap is a wide pass, situated between the Scottish Southern Uplands and the English Pennines that connects western and eastern England. It was a major ice flow drainage pathway of the last British–Irish Ice Sheet. This study presents new glacial geomorphological and sedimentological data from the Tyne Gap region that has allowed detailed reconstructions of palaeo‐ice flow dynamics during the Late Devensian (Marine Isotope Stage 2). Mapped lineations reveal a complex palimpsest pattern which shows that ice flow was subject to multiple switches in direction. These are summarised into three major ice flow phases. Stage I was characterised by convergent Lake District and Scottish ice that flowed east through the Tyne Gap, as a topographically controlled ice stream. This ice stream was identified from glacial geomorphological evidence in the form of convergent bedforms, streamlined subglacial bedforms and evidence for deformable bed conditions; stage II involved northerly migration of the Solway Firth ice divide back into the Southern Uplands, causing the easterly flow of ice to be weakened, and resulting in southeasterly flow of ice down the North Tyne Valley; and stage III was characterised by strong drawdown of ice into the Irish Sea Ice Basin, thus starving the Tyne Gap of ice and causing progressive ice sheet retreat westwards back across the watershed, prior to ice stagnation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
《第四纪科学杂志》2017,32(1):48-62
The southernmost terrestrial extent of the Irish Sea Ice Stream (ISIS), which drained a large proportion of the last British–Irish Ice Sheet, impinged on to the Isles of Scilly during Marine Isotope Stage 2. However, the age of this ice limit has been contested and the interpretation that this occurred during the Last Glacial Maximum (LGM) remains controversial. This study reports new ages using optically stimulated luminescence (OSL) dating of outwash sediments at Battery, Tresco (25.5 ± 1.5 ka), and terrestrial cosmogenic nuclide exposure dating of boulders overlying till on Scilly Rock (25.9 ± 1.6 ka), which confirm that the ISIS reached the Isles of Scilly during the LGM. The ages demonstrate this ice advance on to the northern Isles of Scilly occurred at ∼26 ka around the time of increased ice‐rafted debris in the adjacent marine record from the continental margin, which coincided with Heinrich Event 2 at ∼24 ka. OSL dating (19.6 ± 1.5 ka) of the post‐glacial Hell Bay Gravel at Battery suggests there was then an ∼5‐ka delay between primary deposition and aeolian reworking of the glacigenic sediment, during a time when the ISIS ice front was oscillating on and around the Llŷn Peninsula, ∼390 km to the north. Copyright © 2017 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.
  相似文献   

10.
Outcrops of pebbly mud (diamict) at Scarborough in Southern Ontario, Canada (the so-called Sunnybrook ‘Till’) are associated with the earliest incursion of the Laurentide Ice Sheet (LIS) into mid-continent North America some 45,000 years ago. The Sunnybrook is a blanket-like deposit containing deepwater ostracodes and occurs conformably within a thick (100 m) succession of deltaic and glaciolacustrine facies that record water depth changes in a large proglacial lake. Contextual evidence (associated facies, sedimentary structures, deposit geometry and landforms) indicates a low energy depositional setting in an ice-dammed ancestral Lake Ontario in which scouring by floating ice masses was an important process. U-shaped, iceberg-cut scours (with lateral berms) up to 7 m deep, occur on the upper surface of the Sunnybrook and are underlain by ‘sub-scour’ structures that extend several meters below the scour base. Ice-rafted concentrations of clasts (‘clast layers’), grooved surfaces formed by floating ice glissading over a muddy lake floor (‘soft sediment striations’) and melanges of sand and mud mixed by grounding ice keels (‘ice keel turbates’) are present and are all well known from modern cold environments. The wider significance of this depositional model is that the LIS margin lay east of Scarborough and did not overrun Southern Ontario. This finding is in agreement with recent data from the Erie Basin of Canada, Ohio, and Indiana where deposits formerly correlated with the Sunnybrook (and thus implying an extensive early Wisconsin ice sheet) are now regarded as Illinoian. A speculative hypothesis is proposed that relates deposition of the Sunnybrook and two younger deposits of similar sedimentology, to surge-like instabilities of the southern LIS margin.  相似文献   

11.
Ice‐rafted debris (IRD) seeded into the ocean from Northern Hemisphere ice sheets is found in ocean cores along the southwestern European margin through the last glacial period. It is known that the origin of this IRD, especially off Iberia, can vary between North America and western Europe during short‐lived episodes of greatly enhanced iceberg flux, known as Heinrich events, although in most Heinrich events the IRD has a North American source. During the longer times of much lower IRD fluxes between Heinrich events, use of an intermediate complexity climate model, coupled to an iceberg dynamic and thermodynamic model, shows that background levels of IRD most likely originate from western Europe, particularly the British–Irish Ice Sheet. Combining modelling with palaeoceanographic evidence supports reconstructions of a short‐lived, but substantial, Celtic and Irish Sea Ice Stream around 23 ka. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

13.
The Lateglacial and postglacial sequence in the northern Gulf of Riga is sedimentologically subdivided into nine distinctive layers. In the seismo‐acoustic sequence these layers are correlated with seven seismic/acoustic units, which largely reflect different stages in the development of the Baltic Sea. A uniform layer of the Late Weichselian till, a layer of waterlain glacial diamicton (WGD), a varved succession of the Baltic Ice Lake, a brackish‐water/freshwater sandy/silty clay of Yoldia Sea, a FeS‐rich layer of Ancylus Lake and discordantly bedded sand of the Litorina Sea and present‐day gyttja are revealed both in sediment cores and in acoustic recordings. In general, the lateral extent of the distinguished sediment layers is gradually shrinking upwards in the Quaternary sequence towards the deepest, central depression of the gulf. Two distinguished regional discontinuities divide the Lateglacial and postglacial sediment sequence into three allounits: glacial diamicton deposits in the lower part; ice‐proximal WGD, glaciolacustrine and postglacial lake/marine deposits in the middle; and brackish‐water marine deposits in the uppermost part of the sequence. The presented detailed seismostratigraphic subdivision of the Quaternary sediment sequence of the Gulf of Riga permits a correlation/comparison with similar sequences across the Baltic Sea and in other former glaciated basins.  相似文献   

14.
《Quaternary Science Reviews》2007,26(19-21):2375-2405
Late Devensian glacigenic sediments and landforms along the north-west coast of Wales document the advance and subsequent retreat of the eastern margin of an Irish Sea Ice Stream that met, coalesced and ultimately uncoupled from ice radiating outwards from the adjacent Welsh Ice Cap centred over Snowdonia. Across the boundary between the two former ice masses is a set of sediment–landform assemblages that reflect rapidly changing erosional and depositional conditions during ice interaction. From the inner part of the ice-stream the assemblages range outwards, from a subglacial depositional assemblage, characterised by drumlin swarms; through a subglacial erosional assemblage, marked by prominent bedrock scours and large subglacial rock channels; through an ice-marginal assemblage, identified by closely spaced, glaciotectonised push moraines and intervening marginal sandur troughs; into a freely expanding proglacial sandur and lacustrine delta assemblage. The ice-marginal assemblage provides evidence for numerous oscillatory episodes during retreat and at least 20 ice-marginal limits can be identified. At least 11 of these display multiple criteria for identifying readvance and, in the ideal case, is characterised by a moraine form built by localised tectonic stacking of diamict to the rear, fronted by a clastic wedge of ice-front alluvial fan gravel and intercalated flow till. The distribution of sediment–landform assemblages suggests a highly dynamic, convergent ice-stream flow pattern, with high ice velocity, a sharply delineated lateral shear margin, pervasive ice-marginal glaciotectonic deformation and a tightly focused ice-marginal sediment delivery system; all signature characteristics of contemporary ice streams.  相似文献   

15.
Along the south coast of Ireland, a shelly diamict facies, the Irish Sea Till, has been variously ascribed to subglacial deposition by a grounded Irish Sea glacier or to glacimarine sedimentation by suspension settling and iceberg rafting. Observations are presented here from five sites along the south coast to directly address this question. At these sites, sedimentary evidence is preserved for the onshore advance of a grounded Irish Sea glacier, which glacitectonically disturbed and eroded pre‐existing sediments and redeposited them as deformation till. Recession of this Irish Sea glacier resulted in the damming of ice‐marginal lakes in embayments along the south coast, into which glacilacustrine sedimentation then took place. These lake sediments were subsequently glacitectonised and reworked by overriding glacier ice of inland origin, which deposited deformation till on top of the succession. There is no evidence for deposition of the Irish Sea diamicts by glacimarine sedimentation at these sites. The widespread development of subglacial deforming bed conditions reflected the abundance of fine‐grained marine and lacustrine sediments available for subglacial erosion and reworking. Stratigraphical and chronological data suggest that the advance of a grounded Irish Sea glacier along the south coast occurred during the last glaciation, and this is regionally consistent with marine geological data from the Celtic Sea. These observations demonstrate extension of glacier ice far beyond its traditional limits in the Celtic Sea and on‐land in southern Ireland during the last glaciation, and remove the stratigraphical basis for chronological differentiation of surficial glacial drifts, and thus the Munsterian Glaciation, in southern Ireland. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Internal structure, stable isotope composition and tritium concentration were measured in and around debris‐bearing ice at the margin of Storglaciären, where englacial debris bands have previously been inferred to form by thrusting. Two types of debris bands were distinguished: (i) an unsorted diamicton band that is laterally continuous for more than 200 m, and (ii) well‐sorted sand and gravel bands that are lenticular and discontinuous. Above‐background tritium levels and enrichment of δ18 O and δD in ice from the diamicton band indicate entrainment by basal freeze‐on since 1952. Isotopic enrichment and tritium‐free ice in the sandy debris bands also indicate entrainment in freezing water, but prior to 1952. The lenticular cross‐section, sorting and stratification of the sandy bands suggest that they were deposited englacially. The basally accreted diamicton band has been elevated tens of metres above the bed and presently overlies the englacially deposited sandy bands, suggesting that the stratigraphy has been disrupted. Three interpretations could account for these observations: (i) thrusting of fast‐moving ice over slow, marginal ice uplifting recently accreted basal ice along the fault; (ii) folding near the margin, elevating young basal ice over older basal and englacial ice; and (iii) debris‐band formation by an unknown mechanism and subsequent contamination of ice geochemical properties by meltwater flow through debris bands. Although none of these interpretations is consistent with all measurements, folding is most compatible with observations and local ice‐flow kinematics.  相似文献   

17.
The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel – Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.  相似文献   

18.
从冰前风沙地貌初看普若岗日冰原的形成演变   总被引:5,自引:2,他引:3  
野外实地考察和室内样品分析表明,位于普若岗日冰原西侧冰川前缘带的大片风沙地貌,直接发育在冰碛之上,并以冰碛为主要物质来源,与冰川运动和冰原环境具有密切的联系,是相关冰川和冰原形成演化过程的良好反映与记录.结合沙丘沉积序列中的沉积构造测量、粒度分析及腐殖质夹层的14C测年等结果,初步得出:普若岗日冰原至少形成于18kaBP;冰原降水可能主要来自西风降水;18kaBP以来,冰原在总体上处于收缩过程,在约108kaBP来,冰原西缘的零平衡线的年均水平退缩速率约为088~102m·a-1,铅直升高速率约为24~32mm·a-1。  相似文献   

19.
Recent results concerning the extent of the last Weichselian (Valdaian) Kara Sea Ice Sheet in the area around the Polar Urals and the north-eastern Russian Plain allow reconstruction of the surface form of this part of the ice sheet by using a combination of moraine-ridge elevation data and ice-flow indicators. The resulting reconstruction suggests a thin ice sheet with a pronounced lowering of surface gradient at the transition from bedrock substrate around the Urals to a substrate consisting of unconsolidated sediments in the Pechora Basin. Comparison with similar reconstructions from along the southern and north-western parts of the Laurentide Ice Sheet margin, for which a deformable-bed model of glacier dynamics has been proposed, shows strong similarities in surface gradients and ice thicknesses as well in overall sedimentological and morphological characteristics of the associated basal till-deposits. This suggests comparable styles of glacier dynamics for the two ice sheets. If this first approximation of the Kara Sea Ice Sheet surface form is correct, it can be postulated that at least the south-western part of the ice sheet was much more mobile and dynamic than previously expected.  相似文献   

20.
Livingstone, S. J., Ó Cofaigh, C., Evans, D. J. A. & Palmer, A. 2010: Sedimentary evidence for a major glacial oscillation and proglacial lake formation in the Solway Lowlands (Cumbria, UK) during Late Devensian deglaciation. Boreas, Vol. 39, pp. 505–527. 10.1111/j.1502‐3885.2010.00149.x. ISSN 0300‐9483. This paper is a sedimentological investigation of Late Devensian glacial deposits from the Solway Lowlands, northwest England, in the central sector of the last British–Irish Ice Sheet. In this region, laminated glaciolacustrine sediments occur, sandwiched between diamictons interpreted as subglacial tills. At one location the laminated sediments are interpreted as varves, and indicate the former presence of a proglacial lake. Correlation of these varves with other laminated sediments indicates that the glacial lake was at least 140 km2 in area and probably much larger. Extensive beds of sand, silt and gravel throughout the Solway Basin associated with the lake demonstrate ice‐free conditions over a large area. Based on the number of varves, the lake was in existence for at least 261 years. The stratigraphic sequence of varves bracketed by tills implies a major glacial oscillation prior to the Scottish Re‐advance (16.8 cal. ka BP). This oscillation is tentatively correlated with the Gosforth oscillation at c.19.5 cal. ka BP. Subsequent overriding of these glaciolacustrine sediments during a westward‐moving re‐advance demonstrates rapid ice loss and then gain within the Solway Lowlands from ice‐dispersal centres in the Lake District, Pennines and Southern Uplands. It is speculated that the existence of this and other lakes along the northeastern edge of the Irish Sea Basin would have influenced ice‐sheet dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号