首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
Using a simple ionic model with polarizable oxygen ions and dissociating water molecules, we have calculated the energetics governing the distribution of Fe(II)/Fe(III) ions at the reduced (2 × 1) surface of α-Fe2O3 (hematite) (0 1 2) under dry and hydrated conditions. The results show that systems with Fe(II) ions located in the near-surface region have lower potential energy for both dry and hydrated surfaces. The distribution is governed by coupling of the ferrous iron centers to positive charge associated with missing oxygen atoms on the dry reduced (2 × 1) (0 2 1) surface. As the surface is hydroxylated, the missing oxygen rows are filled and protons from dissociated water molecules become the positive charge centers, which couple more weakly to the ferrous iron centers. At the same time, the first-layer iron centers change from fourfold or fivefold coordination to sixfold coordination lowering the potential energy of ferric iron in the first layer and favoring migration of ferrous iron from the immediate surface sites. This effect can also be understood as reflecting stronger solvation of Fe(III) by the adsorbed water molecules and by hydrolysis reactions favoring Fe(III) ions at the immediate surface. The balance between these two driving forces, which changes as a function of hydration, provides a compelling explanation for the anomalous coverage dependence of water desorption in ultra-high vacuum experiments.  相似文献   

2.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

3.
The fate of the oxoanion arsenate in diverse systems is strongly affected by its adsorption on the surfaces of iron (oxyhydr)oxide minerals. Predicting this behavior in the environment requires an understanding of the mechanisms of arsenate adsorption. In this study, the binding site and adsorption geometry of arsenate on the hematite (0 1 2) surface is investigated. The structure and termination of the hematite (0 1 2)-water interface were determined by high resolution X-ray reflectivity, revealing that two distinct terminations exist in a roughly 3:1 proportion. The occurrence of multiple terminations appears to be a result of sample preparation, and is not intrinsic to the hematite (0 1 2) surface. X-ray standing wave (XSW) measurements were used to determine the registry of adsorbed arsenate to the hematite structure, and thus the binding site and geometry of the resulting surface complex. Arsenate forms a bridging bidentate complex on two adjacent singly coordinated oxygen groups on each of the two distinct terminations present at the hematite surface. Although this geometry is consistent with that seen in past studies, the derived As-Fe distances are longer, the result of the topology of the FeO6 octahedra on the (0 1 2) surface. As EXAFS-derived As-Fe distances are often used to determine the adsorption mechanism in environmental samples (e.g., mine tailings, contaminated sediments), this demonstrates the importance of considering the possible sorbent surface structures and arrangements of adsorbates when interpreting such data.As multiple functional groups are present and multiple binding geometries are possible on the hematite (0 1 2) surface, the XSW data suggest that formation of bridging bidentate surface complexes on singly coordinated oxygen sites is the preferred adsorption mechanism on this and most other hematite surfaces (provided those surfaces contain adjacent singly coordinated oxygen groups). These measurements also constrain the likely reaction stoichiometry, with only the protonation state of the surface complex undetermined. Although bridging bidentate inner-sphere surface complexes comprised the majority of the adsorbed arsenate present on the hematite (0 1 2) surface, there is an additional population of sorbed arsenate species that could not be characterized by the XSW measurements. These species are likely more disordered, and thus more weakly bound, than the bridging bidentate complexes, and may play a role in determining the fate, transport, and bioavailability of arsenate in the environment. Finally, the possibility of obtaining species-specific XSW measurements by tuning the incident beam energy to specific features in a XANES spectrum is described.  相似文献   

4.
Molecular dynamics simulations of water in contact with the (0 0 1) and (0 1 0) surfaces of orthoclase (KAlSi3O8) were carried out to investigate the structure and dynamics of the feldspar-water interface, contrast the intrinsic structural properties of the two surfaces, and provide a basis for future work on the diffusion of ions and molecules in microscopic mineral fractures. Electron density profiles were computed from the molecular dynamics trajectories and compared with those derived experimentally from high-resolution X-ray reflectivity measurements by Fenter and co-workers [Fenter P., Cheng L., Park C., Zhang H. and Sturchio N. C. (2003a) Structure of the orthoclase (0 0 1)- and (0 1 0)-water interfaces by high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta67, 4267-4275]. For each surface, three scenarios were considered whereby the interfacial species is potassium, water, or a hydronium ion. Excellent agreement was obtained for the (0 0 1) surface when potassium is the predominant interfacial species; however, some discrepancies in the position of the interfacial peaks were obtained for the (0 1 0) surface. The two surfaces showed similarities in the extent of water ordering at the interface, the activation energies for water and potassium desorption, and the adsorption localization of interfacial species. However, there are also important differences between the two surfaces in the coordination of a given adsorbed species, adsorption site densities, and the propensity for water molecules in surface cavities and those in the first hydration layer to coordinate to surface bridging oxygen atoms. These differences may have implications for the extent of dissolution in the low-pH regime since hydrolysis of Si(Al)OSi(Al) bonds is a major dissolution mechanism.  相似文献   

5.
Structural changes and surface oxidation state were examined following the reaction of hematite (0 0 1), (0 1 2), and (1 1 0) with aqueous Fe(II). X-ray reflectivity measurements indicated that Fe(II) induces changes in the structure of all three surfaces under both acidic (pH 3) and neutral (pH 7) conditions. The structural changes were generally independent of pH although the extent of surface transformation varied slightly between acidic and neutral conditions; no systematic trends with pH were observed. Induced changes on the (1 1 0) and (0 1 2) surfaces include the addition or removal of partial surface layers consistent with either growth or dissolution. In contrast, a <1 nm thick, discontinuous film formed on the (0 0 1) surface that appears to be epitaxial yet is not a perfect extension of the underlying hematite lattice, being either structurally defective, compositionally distinct, or nanoscale in size and highly relaxed. Resonant anomalous X-ray reflectivity measurements determined that the surface concentration of Fe(II) present after reaction at pH 7 was below the detection limit of approximately 0.5-1 μmol/m2 on all surfaces. These observations are consistent with Fe(II) oxidative adsorption, whereby adsorbed Fe(II) is oxidized by structural Fe(III) in the hematite lattice, with the extent of this reaction controlled by surface structure at the atomic scale. The observed surface transformations at pH 3 show that Fe(II) oxidatively adsorbs on hematite surfaces at pH values where little net adsorption occurs, based on historical macroscopic Fe(II) adsorption behavior on fine-grained hematite powders. This suggests that Fe(II) plays a catalytic role, in which an electron from an adsorbed Fe(II) migrates to and reduces a lattice Fe(III) cation elsewhere, which subsequently desorbs in a scenario with zero net reduction and zero net adsorption. Given the general pH-independence and substantial mass transfer involved, this electron and atom exchange process appears to be a significant subsystem within macroscopic pH-dependent Fe(II) adsorption.  相似文献   

6.
Experiments were performed herein to investigate the rates and products of heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to hematite and goethite, and by Fe(II) associated with a dithionite-citrate-bicarbonate (DCB) reduced natural phyllosilicate mixture [structural, ion-exchangeable, and edge-complexed Fe(II)] containing vermiculite, illite, and muscovite. The heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to the Fe(III) oxides increased with increasing pH and was coincident with a second event of adsorption. The reaction was almost instantaneous above pH 7. In contrast, the reduction rates of Tc(VII) by DCB-reduced phyllosilicates were not sensitive to pH or to added that adsorbed to the clay. The reduction kinetics were orders of magnitude slower than observed for the Fe(III) oxides, and appeared to be controlled by structural Fe(II). The following affinity series for heterogeneous Tc(VII) reduction by Fe(II) was suggested by the experimental results: aqueous Fe(II) ∼ adsorbed Fe(II) in phyllosilicates [ion-exchangeable and some edge-complexed Fe(II)] ? structural Fe(II) in phyllosilicates ? Fe(II) adsorbed on Fe(III) oxides. Tc-EXAFS spectroscopy revealed that the reduction products were virtually identical on hematite and goethite that were comprised primarily of sorbed octahedral TcO2 monomers and dimers with significant Fe(III) in the second coordination shell. The nature of heterogeneous Fe(III) resulting from the redox reaction was ambiguous as probed by Tc-EXAFS spectroscopy, although Mössbauer spectroscopy applied to an experiment with 56Fe-goethite with adsorbed 57Fe(II) implied that redox product Fe(III) was goethite-like. The Tc(IV) reduction product formed on the DCB-reduced phyllosilicates was different from the Fe(III) oxides, and was more similar to Tc(IV) oxyhydroxide in its second coordination shell. The heterogeneous reduction of Tc(VII) to less soluble forms by Fe(III) oxide-adsorbed Fe(II) and structural Fe(II) in phyllosilicates may be an important geochemical process that will proceed at very different rates and that will yield different surface species depending on subsurface pH and mineralogy.  相似文献   

7.
Ordering of interfacial water at the hematite and corundum (0 0 1)-water interfaces has been characterized using in situ high resolution specular X-ray reflectivity measurements. The hematite (0 0 1) surface was prepared through an annealing process to produce a surface isostructural with corundum (0 0 1), facilitating direct comparison. Interfacial water was found to display a similar structure on this pair of isostructural surfaces. A single layer of adsorbed water having a large vibrational amplitude was present on each surface and additional ordering of water extended at least 1 nm into the bulk fluid, with the degree of ordering decreasing with increasing distance from the surfaces. Consistent with prior studies of the (0 1 2) and (1 1 0) surfaces of hematite and corundum, the configuration of water above the (0 0 1) surfaces is primarily controlled by the surface structure, specifically the arrangement of surface functional groups. However, interfacial water at the (0 0 1) surfaces displayed significantly larger vibrational amplitudes throughout the interfacial region than at other isostructural sets of hematite and corundum surfaces, indicating weaker ordering. Comparison of the vibrational amplitudes of adsorbed water on a series of oxide, silicate, and phosphate mineral surfaces suggests that the presence or absence of a substantial interfacial electrostatic field is the primary control on water ordering and not the surface structure itself. On surfaces for which charge originates dominantly through protonation-deprotonation reactions the controlling factor appears to be whether conditions exist where most functional groups are uncharged as opposed to the net surface charge. The doubly coordinated functional groups on hematite and corundum (0 0 1) surfaces are largely uncharged under slightly acidic to circumneutral pH conditions, leading to weak ordering, whereas singly coordinated groups on (0 1 2) and (1 1 0) surfaces of these phases are always charged, even when the net surface charge is zero, and induce strong water ordering. Surfaces lacking structural charge can thus be divided into two distinct classes that induce either strong or weak ordering of interfacial water. Surface functional group coordination is the ultimate control on this division as it determines the charge state of such groups under different protonation configurations. Ion adsorption and electron transfer processes may differ between these classes of surfaces because of the effect of water ordering strength on interfacial capacitances and hydrogen bonding.  相似文献   

8.
Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and the M2+ impurities Cd, Cu and Zn, in the (0 1 2) and (0 0 1) surfaces of jarosite. The calculations show that the incorporation of Al on an Fe site is favorable on all surfaces in which terminal Fe ions are exposed, and especially on the (0 0 1) [Fe3(OH)3]6+ surface. Incorporation of Cd, Cu or Zn on a K site balanced by a K vacancy is predicted to stabilize the surfaces, but calculated endothermic solution energies and the high degree of distortion of the surfaces following incorporation suggest that these substitutions will be limited. The calculations also suggest that incorporation of Cd, Cu and Zn on an Fe site balanced by an OH vacancy, or by coupled substitution on both K and Fe sites, is unfavorable, although this might be compensated for by growth of a new layer of jarosite or goethite, as predicted for bulk jarosite. The results of the simulations show that surface structure will exert an influence on uptake of impurities in the order Cu > Cd > Zn, with the most favorable surfaces for incorporation being (0 1 2) [KFe(OH)4]0 and (0 0 1) [Fe3(OH)3]6+.  相似文献   

9.
For the purpose of improving fundamental understanding of the redox reactivity of magnetite, quantum-mechanical calculations were applied to predict Fe2+ availability and electron hopping rates at magnetite (1 0 0) surfaces, with and without the presence of adsorbed water. Using a low free energy surface reconstruction (½-Fetet layer relaxed into the Feoct (1 0 0) plane), the relaxed outermost layer of both the hydrated and vacuum-terminated surfaces were found to be predominantly enriched in Fe2+ within the octahedral sublattice, irrespective of the presence of adsorbed water. At room temperature, mobile electrons move through the octahedral sublattice by Fe2+-Fe3+ valence interchange small polaron hopping, calculated at 1010-1012 hops/s for bulk and bulk-like (i.e., near-surface) environments. This process is envisioned to control sustainable overall rates of interfacial redox reactions. These rates decrease by up to three orders of magnitude (109 hops/s) at the (1 0 0) surface, and no significant difference is observed for vacuum-terminated versus hydrated cases. Slower hopping rates at the surface appear to arise primarily from larger reorganization energies associated with octahedral Fe2+-Fe3+ valence interchange in relaxed surface configurations, and secondarily on local charge distribution patterns surrounding Fe2+-Fe3+ valence interchange pairs. These results suggest that, with respect to the possibility that the rate and extent of surface redox reactions depend on Fe2+ availability and its replenishment rate, bulk electron hopping mobility is an upper-limit for magnetite and slower surface rates may need to be considered as potentially rate-limiting. They also suggest that slower hopping mobilities calculated for surface environments may be amenable to Fe2+-Fe3+ site discrimination by conventional spectroscopic probes.  相似文献   

10.
Many geochemical reactions that control the composition of natural waters, contaminant fate and transport, and biogeochemical element cycling take place at the interface between minerals and aqueous solutions. A fundamental understanding of these important processes requires knowledge of the structure of mineral-water interfaces. High-resolution specular X-ray reflectivity was used to determine the structure of the hematite (0 1 2)-water interface. Relaxation of the surface was observed to be minor, and water was found to order near the hematite surface. Two sites of adsorbed water are inferred to be ordered laterally, one bridging between triply coordinated functional groups and the other bridging between the singly coordinated functional groups on the surface, as steric constraints limit the possible arrangements of water molecules occurring at the observed heights above the hematite surface. Relaxations of the hematite and corundum (0 1 2) surfaces, which are isostructural, are similar and limited primarily to the top most layer of the structures. No significant changes to the interfacial stoichiometry (i.e., partial occupancy of surface species) are observed in either case. The structure of interfacial water is similar on the hematite and corundum (0 1 2) surfaces as well, although water appeared to be less well ordered on the hematite surface. This may be due to expected differences in the oxygen exchange rates from surface functional groups or the apparent better matching of the corundum oxygen lattice to the natural structural ordering in water, and suggests that the dielectric constant gradients of interfacial water may differ on the two surfaces. Similar charging behavior is expected for these surfaces as similar types of surface functional groups are exposed. Although generally similar, subtle differences in the reactivity of hematite and corundum (0 1 2) surfaces to arsenate adsorption, and possibly the adsorption of other species, may be related to the difference in ordering of interfacial water observed in this study.  相似文献   

11.
The Fe(II) adsorption by non-ferric and ferric (hydr)oxides has been analyzed with surface complexation modeling. The CD model has been used to derive the interfacial distribution of charge. The fitted CD coefficients have been linked to the mechanism of adsorption. The Fe(II) adsorption is discussed for TiO2, γ-AlOOH (boehmite), γ-FeOOH (lepidocrocite), α-FeOOH (goethite) and HFO (ferrihydrite) in relation to the surface structure and surface sites. One type of surface complex is formed at TiO2 and γ-AlOOH, i.e. a surface-coordinated Fe2+ ion. At the TiO2 (Degussa) surface, the Fe2+ ion is probably bound as a quattro-dentate surface complex. The CD value of Fe2+ adsorbed to γ-AlOOH points to the formation of a tridentate complex, which might be a double edge surface complex. The adsorption of Fe(II) to ferric (hydr)oxides differs. The charge distribution points to the transfer of electron charge from the adsorbed Fe(II) to the solid and the subsequent hydrolysis of the ligands that coordinate to the adsorbed ion, formerly present as Fe(II). Analysis shows that the hydrolysis corresponds to the hydrolysis of adsorbed Al(III) for γ-FeOOH and α-FeOOH. In both cases, an adsorbed M(III) is found in agreement with structural considerations. For lepidocrocite, the experimental data point to a process with a complete surface oxidation while for goethite and also HFO, data can be explained assuming a combination of Fe(II) adsorption with and without electron transfer. Surface oxidation (electron transfer), leading to adsorbed Fe(III)(OH)2, is favored at high pH (pH > ∼7.5) promoting the deprotonation of two FeIII-OH2 ligands. For goethite, the interaction of Fe(II) with As(III) and vice versa has been modeled too. To explain Fe(II)-As(III) dual-sorbate systems, formation of a ternary type of surface complex is included, which is supposed to be a monodentate As(III) surface complex that interacts with an Fe(II) ion, resulting in a binuclear bidentate As(III) surface complex.  相似文献   

12.
Structural characterization of iron oxide-water interfaces provides insight into the mechanisms through which these minerals control contaminant fate and element cycling in soil, sedimentary, and groundwater systems. Ordering of interfacial water and structural relaxations at the hematite (1 1 0) surface have been investigated in situ using high-resolution specular X-ray reflectivity. These measurements demonstrate that relaxations are constrained to primarily the top ∼5 Å of the surface. Near-surface iron atoms do not relax substantially, although the uppermost layer displays an increased distribution width, while the undercoordinated oxygens on the surface uniformly relaxed outward. Two sites of adsorbed water and additional layering of water farther from the surface were observed. Water fully covers the (1 1 0) surface and appears to form a continuous network extending into bulk solution, with positional order decreasing to that of a disordered bulk fluid within 1 nm. The arrangement of water is similar to that on the hematite (0 1 2) surface, which has a similar surface topography, although these surfaces display different vibrational amplitudes or positional disorder of adsorbed water molecules and average spacings of near-surface layered water. Comparison between these surfaces suggests that interfacial water ordering on hematite is controlled primarily by surface structure and steric constraints and that highly ordered water is likely common to most hematite-water interfaces.  相似文献   

13.
The subsurface behaviour of 99Tc, a contaminant resulting from nuclear fuels reprocessing, is dependent on its valence (e.g., IV or VII). Abiotic reduction of soluble Tc(VII) by Fe(II)(aq) in pH 6-8 solutions was investigated under strictly anoxic conditions using an oxygen trap (<7.5 × 10−9 atm O2). The reduction kinetics were strongly pH dependent. Complete and rapid reduction of Tc(VII) to a precipitated Fe/Tc(IV) form was observed when 11 μmol/L of Tc(VII) was reacted with 0.4 mmol/L Fe(II) at pH 7.0 and 8.0, while no significant reduction was observed over 1 month at pH 6.0. Experiments conducted at pH 7.0 with Fe(II)(aq) = 0.05-0.8 mmol/L further revealed that Tc(VII) reduction was a combination of homogeneous and heterogeneous reaction. Heterogeneous reduction predominated after approximately 0.01 mmol/L of Fe(II) was oxidized. The heterogeneous reaction was more rapid, and was catalyzed by Fe(II) that adsorbed to the Fe/Tc(IV) redox product. Wet chemical and Fe-X-ray absorption near edge spectroscopy measurements (XANES) showed that Fe(II) and Fe(III) were present in the Fe/Tc(IV) redox products after reaction termination. 57Fe-Mössbauer, extended X-ray adsorption fine structure (EXAFS), and transmission electron microscopy (TEM) measurements revealed that the Fe/Tc(IV) solid phase was poorly ordered and dominated by Fe(II)-containing ferrihydrite with minor magnetite. Tc(IV) exhibited homogeneous spatial distribution within the precipitates. According to Tc-EXAFS measurements and structural modeling, its molecular environment was consistent with an octahedral Tc(IV) dimer bound in bidentate edge-sharing mode to octahedral Fe(III) associated with surface or vacancy sites in ferrihydrite. The precipitate maintained Tc(IV)aq concentrations that were slightly below those in equilibrium with amorphous Tc(IV)O2·nH2O(s). The oxidation rate of sorbed Tc(IV) in the Fe/Tc precipitate was considerably slower than Tc(IV)O2·nH2O(s) as a result of its intraparticle/intragrain residence. Precipitates of this nature may form in anoxic sediments or groundwaters, and the intraparticle residence of sorbed/precipitated Tc(IV) may limit 99Tc remobilization upon the return of oxidizing conditions.  相似文献   

14.
Evaluation of the long-term health risks of uranium contamination in soils, sediments, and groundwater requires a fundamental understanding of the various processes affecting subsurface transport of uranium, including adsorption processes at mineral/water interfaces. In this study, the sites of binding and surface complexation of U(VI) adsorbed on the (11?02) surfaces of α-Al2O3 and α-Fe2O3 have been determined using crystal truncation rod (CTR) diffraction and grazing incidence extended X-ray absorption fine structure (GI-EXAFS) spectroscopy. The available binding sites on the (11?02) surfaces were constrained through bond valence and steric analyses. On both surfaces, U(VI) forms uranyl-carbonato ternary complexes to surface oxygens that are singly coordinated to aluminum or iron. On the α-Al2O3 (11?02) surface, a monodentate complex results, whereas on the α-Fe2O3 (11?02) surface, the binding is bidentate to adjacent singly coordinated oxygen sites (i.e., binuclear). Differences in protonation of the singly coordinated oxygen atoms, surface charging, U(VI) aqueous speciation, substrate structure, or the electronic structure of surface functional groups may be the cause of these differences in adsorption geometry. Both XPS and CTR diffraction reveal higher U(VI) surface coverages on the α-Fe2O3 (11?02) surface than on the α-Al2O3 (11?02) surface. This difference cannot be the result of differences in defect concentration alone as CTR diffraction is not sensitive to U(VI) sorbed to defect sites, implying that the α-Fe2O3 (11?02) surface has an intrinsically higher affinity for U(VI). The surface complexes observed in this study are different from the bidentate, mononuclear complexes typically derived for U(VI) on powdered aluminum- and iron-(oxyhydr)oxides and clay minerals using U LIII-edge EXAFS spectroscopy. However, the presence of monodentate, mononuclear and bidentate, binuclear complexes may have been overlooked in past EXAFS studies on such substrates, as these complexes have U-Al or U-Fe interatomic distances that are too large to be easily detected by EXAFS spectroscopy.  相似文献   

15.
The interaction of Pu3+ bearing solutions with the muscovite (0 0 1) basal plane is explored using a combination of ex-situ approaches including alpha-counting, to determine the Pu3+ adsorption isotherm, and X-ray reflectivity (XR) and resonant anomalous X-ray reflectivity (RAXR), to probe the interfacial structure and Pu-specific distribution, respectively. Pu uptake to the muscovite (0 0 1) surface from Pu3+ solutions in a 0.1 M NaClO4 background electrolyte at pH 3 follows an approximate Langmuir isotherm with an apparent adsorption constant, Kapp = 5 × 104 M−1, and with a maximum coverage that is consistent with the amount needed to fully compensate the surface charge by trivalent Pu. The XR results show that the muscovite surface reacted with a 10−3 M Pu3+ solution (at pH 3 with 0.1 M NaClO4) and dried in the ambient environment, maintains a 30-40 Å thick layer, indicating the presence of a residual hydration layer (possibly including adventitious carbon). The RAXR results indicate that Pu sorbs on the muscovite surface with an intrinsically broad distribution with an average height of 18 Å, substantially larger than heights expected for any specifically adsorbed inner- or outer-sphere complexes. These results are discussed in the context of recent studies of cation adsorption trends on muscovite and the possible roles of Pu hydrolysis species in controlling the Pu-muscovite interactions.  相似文献   

16.
Adsorption of Rb+ and Sr2+ at the orthoclase (0 0 1)-solution interface is probed with high-resolution X-ray reflectivity and resonant anomalous X-ray reflectivity. Specular X-ray reflectivity data for orthoclase in contact with 0.01 m RbCl solution at pH 5.5 reveal a systematic increase in electron density adjacent to the mineral surface with respect to that observed in contact with de-ionized water (DIW). Quantitative analysis indicates that Rb+ adsorbs at a height of 0.83 ± 0.03 Å with respect to the bulk K+ site with a nominal coverage of 0.72 ± 0.10 ions per surface unit mesh (55.7 Å2). These results are consistent with an ion-exchange reaction in which Rb+ occupies an inner-sphere adsorption (IS) site. In contrast, X-ray reflectivity data for orthoclase in contact with 0.01 m Sr(NO3)2 solution at pH 5.3 reveal few significant changes with respect to DIW. Resonant anomalous X-ray reflectivity was used to probe Sr2+ adsorption and to image its vertical distribution. This element-specific measurement reveals that Sr2+ adsorbs with a total coverage of 0.37 ± 0.02 ions per surface unit mesh, at a substantially larger height (3.28 ± 0.05 Å) than found for Rb+, and with a relatively broad density distribution (having a root-mean-square width of 1.88 ± 0.08 Å for a single-peak model), implying that Sr2+ adsorbs primarily as a fully-hydrated outer-sphere (OS), species. Comparison to a two-height model suggests that 13 ± 5% of the adsorbed Sr2+ may be present as an IS species. This partitioning implies a ∼5 kJ/mol difference in free energy between the IS and OS Sr2+ on orthoclase. Differences in the partitioning of Sr2+ between IS and OS species for orthoclase (0 0 1) and muscovite (0 0 1) suggest control by the geometry of the IS adsorption site. Results for the OS distribution are compared to predictions of the Poisson-Boltzmann equation in the strong coupling regime, which predicts an intrinsically narrow vertical diffuse ion distribution; the OS distribution might thus be thought of as the diffuse ion profile in the limit of high surface charge.  相似文献   

17.
Sorption and catalytic oxidation of Fe(II) at the surface of calcite   总被引:1,自引:0,他引:1  
The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps: (a) a rapid adsorption step (seconds-minutes) was followed by (b) a slower incorporation (hours-weeks). The incorporated Fe(II) could not be remobilized by a strong complexing agent (phenanthroline or ferrozine) but the dissolution of the outmost calcite layers with carbonic acid allowed its recovery. Based on results of the latter dissolution experiments, a stoichiometry of 0.4 mol% Fe:Ca and a mixed carbonate layer thickness of 25 nm (after 168 h equilibration) were estimated. Fe(II) sorption on calcite could be successfully described by a surface adsorption and precipitation model (Comans & Middelburg, GCA51 (1987), 2587) and surface complexation modeling (Van Cappellen et al., GCA57 (1993), 3505; Pokrovsky et al., Langmuir16 (2000), 2677). The surface complex model required the consideration of two adsorbed Fe(II) surface species, >CO3Fe+ and >CO3FeCO3H0. For the formation of the latter species, a stability constant is being suggested. The oxidation kinetics of Fe(II) in the presence of calcite depended on the equilibration time of aqueous Fe(II) with the mineral prior to the introduction of oxygen. If pre-equilibrated for >15 h, the oxidation kinetics was comparable to a calcite-free system (t1/2 = 145 ± 15 min). Conversely, if Fe(II) was added to an aerated calcite suspension, the rate of oxidation was higher than in the absence of calcite (t1/2 = 41 ± 1 min and t1/2 = 100 ± 15 min, respectively). This catalysis was due to the greater reactivity of the adsorbed Fe(II) species, >CO3FeCO3H0, for which the species specific rate constant was estimated.  相似文献   

18.
Natural attenuation of arsenic by simple adsorption on oxyhydroxides may be limited due to competing oxyanions, but uptake by coprecipitation may locally sequester arsenic. We have systematically investigated the mechanism and mode (adsorption versus coprecipitation) of arsenic uptake in the presence of carbonate and phosphate, from solutions of inorganic composition similar to many groundwaters. Efficient arsenic removal, >95% As(V) and ∼55% in initial As(III) systems, occurred over 24 h at pHs 5.5-6.5 when Fe(II) and hydroxylapatite (Ca5(PO4)3OH, HAP) “seed” crystals were added to solutions that had been previously reacted with HAP, atmospheric CO2(g) and O2(g). Arsenic adsorption was insignificant (<10%) on HAP without Fe(II). Greater uptake in the As(III) system in the presence of Fe(II) was interpreted as due to faster As(III) to As(V) oxidation by molecular oxygen in a putative pathway involving Fe(IV) and As(IV) intermediate species. HAP acts as a pH buffer that allows faster Fe(II) oxidation. Solution analyses coupled with high-resolution transmission electron microscopy (HRTEM), X-ray Energy-Dispersive Spectroscopy (EDS), and X-Ray Absorption Spectroscopy (XAS) indicated the precipitation of sub-spherical particles of an amorphous, chemically-mixed, nanophase, FeIII[(OH)3(PO4)(AsVO4)]·nH2O or FeIII[(OH)3( PO4)(AsVO4)(AsIIIO3)minornH2O, where AsIIIO3 is a minor component.The mode of As uptake was further investigated in binary coprecipitation (Fe(II) + As(III) or P), and ternary coprecipitation and adsorption experiments (Fe(II) + As(III) + P) at variable As/Fe, P/Fe and As/P/Fe ratios. Foil-like, poorly crystalline, nanoparticles of FeIII(OH)3 and sub-spherical, amorphous, chemically-mixed, metastable nanoparticles of FeIII[(OH)3, PO4nH2O coexisted at lower P/Fe ratios than predicted by bulk solubilities of strengite (FePO4·2H2O) and goethite (FeOOH). Uptake of As and P in these systems decreased as binary coprecipitation > ternary coprecipitation > ternary adsorption.Significantly, the chemically-mixed, ferric oxyhydroxide-phosphate-arsenate nanophases found here are very similar to those found in the natural environment at slightly acidic to circum-neutral pHs in sub-oxic to oxic systems, such phases may naturally attenuate As mobility in the environment, but it is important to recognize that our system and the natural environment are kinetically evolving, and the ultimate environmental fate of As will depend on the long-term stability and potential phase transformations of these mixed nanophases. Our results also underscore the importance of using sufficiently complex, yet systematically designed, model systems to accurately represent the natural environment.  相似文献   

19.
The sorption of 57Fe(II) onto an Fe-free, mineralogically pure and Ca-saturated synthetic montmorillonite sample (structural formula: Ca0.15(Al1.4Mg0.6)(Si4)O10(OH,F)2), was studied as a function of pH under strictly anoxic conditions (N2 glove box atmosphere, O2 content <1 ppm), using wet chemistry and cryogenic (T = 77 K) 57Fe Mössbauer spectrometry. No Fe(III) was detected in solution at any pH. However, in pH conditions where Fe(II) is removed from solution, a significant amount of surface-bound Fe(III) was produced, which increased with pH from 0% to 3% of total Fe in a pre-sorption edge region (i.e. at pH < 7.5 where about 15% of total Fe is sorbed) to 7% of total Fe when all Fe is sorbed. At low pH, where the pre-sorption edge plateau occurs (2 < pH < 7.5), the total sorbed-Fe amount remained constant but, within this sorbed-Fe pool, the Fe(III)/Fe(II) ratio increased with pH, from 0.14 at pH 2 up to 0.74 at pH 7. The pre-sorption edge plateau is interpreted as cation exchange on interlayer surfaces together with a sorption phenomenon occurring on highly reactive (i.e. high affinity) surface sites. As pH increases and protons are removed from the clay edge surface, we propose that more and more of these highly reactive sites acquire a steric configuration that stabilizes Fe(III) relative to Fe(II), thereby inducing a Fe to clay particle electron transfer. A sorption model based on cation exchange combined with surface complexation and electron transfers reproduces both wet chemical as well as the Mössbauer spectrometric results. The mechanism is fully reversible: sorbed-Fe is reduced as pH decreases (Mössbauer solid-state analyses) and all Fe returned to solution is returned as Fe(II) (solution analyses). This would not be the case if the observed oxidations were due to contaminant oxidizing agents in solution. The present work shows that alternating pH may induce surface redox phenomena in the absence of an electron acceptor in solution other than H2O.  相似文献   

20.
Evidence for a simple pathway to maghemite in Earth and Mars soils   总被引:1,自引:0,他引:1  
Soil magnetism is greatly influenced by maghemite (γ-Fe2O3), the presence of which is usually attributed to the following: (1) heating of goethite in the presence of organic matter; (2) oxidation of magnetite (Fe3O4); or (3) dehydroxylation of lepidocrocite (γ-FeOOH). Formation of the latter two minerals in turn requires the presence of Fe(II) in the system. No laboratory experiment or soil study to date has shown whether maghemite can form from ferrihydrite, a poorly crystalline Fe(III) oxide [∼Fe4.5(O,OH,H2O)13.5], below 250°C. However, ferrihydrite is the usual precursor of goethite (α-FeOOH) and hematite (α-Fe2O3), the most frequently occurring crystalline Fe(III) oxides in soils. Here is presented in vitro evidence that ferryhidrite can partly transform into maghemite at 150°C. This transformation occurs upon aging of ferrihydrite precipitated in the presence of phosphate or other ligands capable of ligand exchange with Fe-OH surface groups. This maghemite coexists with hematite and is a transient phase in the transformation of ferrihydrite to hematite, which is apparently stabilized by the adsorbed ligands. Its particle size is small (10 to 30 nm), and its X-ray diffraction pattern exhibits superstructure reflections. The possible formation of maghemite in Mars and in different Earth soils can partly be explained in the light of this pathway with minimal ad hoc assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号