首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sven Maaløe 《Lithos》1979,12(1):59-72
The major-element trend for Hawaiian tholciites is well defined and may be represented by straight lines in a Bowen diagram. The trend can neither be related to olivine accumulation nor to olivine fractionation. Other phenocryst control of the trend is also unlikely. It is suggested that the range in magnesia content for primary Hawaiian tholeiites is from at least 13% MgO to above 20%, MgO. The major-element trend for abyssal tholeiites suggests that abyssal tholeiites with 8–9% MgO are primary magmas. The total possible range in magnesia content for primary tholeiitic magmas is considered to be from 8–9% MgO to about 20% MgO.  相似文献   

2.
The PT-phase relations of a Hawaiian tholeiite with 18.2% MgO has olivine–orthopyroxene multiple saturation at 20.5 kbar and 1,550°C. This pressure is less than the pressure at the lithosphere/asthenosphere transition, and it is suggested that tholeiites with this and lesser MgO contents are fractionated. Assuming a harzburgitic residuum it is shown that Hawaiian primary tholeiites contain about 23% MgO, and are generated at 36±5 kbar and 1,680±50°C. This pressure is equivalent to a depth of 112 km, which is consistent with the thickness of the lithosphere and thermal plume modeling. The minimal MgO content of primary Hawaiian tholeiites is suggested as 19% MgO.  相似文献   

3.
The most magnesian olivine phenocrysts [Mg no.=100 Mg/(Mg+Fe)=90.5] in Hawaiian tholeiites provide evidence for the earliest stages of differentiation of Hawaiian magmas. Based on the correction of olivine fractionation effects, the primitive melt compositions which have crystallised these olivines are picritic with 16 wt% MgO. They are excellent primary-melt candidates. An experimental study on a new Hawaiian picritic primary-melt estimate demonstrates multiple saturation with peridotite (harzburgite) at 2.0 GPa and 1450° C. Garnet is not a liquidus phase at pressures below 3.5 GPa, and garnet peridotite is not a liquidus phase assemblage at any pressure or temperature. This result confirms previous experimental studies on Hawaiian primary-melt estimates and conflicts with trace-elementgeochemistry-based interpretations, which claim that melt generation occurs in the presence of residual garnet. If Hawaiian tholeiite primary magmas are picritic and have equilibrated with garnet-absent peridotite residues, the geochemical and isotopic characteristics of Hawaiian tholeiites (i.e. Sm/Nd chondrites and Nd>0) are consistent with their source recently having been enriched in incompatible elements. Previous modelling shows that such characteristics are consistent with source enrichment through the migration of small melt fractions generated at depth in the presence of garnet. This may be effected either at the time of Hawaiian magma genesis through dynamic melt segregation processes or, by melting of a previously enriched mantle source; possibly oceanic lithospheric mantle which has been infiltrated by melt fractions from the underlying asthenosphere prior to Hawaiian magmatism. Alternatively, if Hawaiian primary magmas are ultramafic in composition (20 wt% MgO) they may be generated in the presence of garnet peridotite at pressures 3.0 GPa.  相似文献   

4.
The Kahoolawe shield volcano produced precaldera and caldera-filling tholeiites and mildly alkalic post-caldera lavas that petrographically and compositionally resemble such lavas from other Hawaiian shield volcanoes. However, Kahoolawe tholeiites display wide ranges in incompatible trace element ratios (e.g., Nb/Th=9–24, Th/Ta=0.6–1.3), 87Sr/86Sr (0.70379–0.70440), 143Nd/144Nd (0.51273–0.51298), and 206Pb/204Pb (17.92–18.37). The isotopic variation exceeds that at any other Hawaiian shield volcano, and spans about half the range for all Hawaiian tholeiites. Quasi-cyclic temporal evolution of Kahoolawe tholeiites is consistent with combined fractional crystallization and periodic recharge by primitive magmas. Ratios of highly incompatible trace elements and Sr, Nd, and Pb isotopic ratios from coherent sub-trends that reflect recurrent interactions between variably evolved magmas and two other mantle components whose compositions are constrained by intersections between these trends. The most MgO-rich Kahoolawe tholeiites are partial melts of a high Nb/Th (23.5) ascending plume, possibly comprising ancient subducted oceanic lithosphere. Slightly evolved tholeiites experienced combined crystal fractionation and assimilation (AFC) of material derived from a distinct reservoir (Nb/Th 9) of asthenospheric derivation. The most evolved tholeiites display compositional shifts toward a third component, having mid ocean ridge basalt-like isotopic ratios but enriched OIB-like trace element ratios, representing part of the lithospheric mantle (or melts thereof). Periodic recurrence of all three magma variants suggests that eruptions may have tapped coeval reservoirs distributed over a large depth range. Kahoolawe provides new evidence concerning the nature of the Hawaiian plume, the distribution of compositional heterogeneities in the suboeanic mantle, and the processes by which Hawaiian tholeiites form and evolve.  相似文献   

5.
Geochemistry of tholeiites from Lanai,Hawaii   总被引:3,自引:0,他引:3  
Lanai is the third smallest of the fifteen principal subaerial shield volcanoes of the Hawaiian hotspot. This volcano apparently became extinct during the shield-building stage of volcanism, as shown by the absence of both alkalic cap and post-erosional lavas. Major and trace element analyses of 22 new samples collected primarily from 3 stratigraphic sections show that Lanai tholeiites span a large range in composition. Some Lanai lavas are unique geochemically among Hawaiian tholeiites in having the lowest abundances of incompatible trace elements of any Hawaiian lavas and well-developed positive Eu anomalies. The geochemical characteristics of these low-abundance Lanai tholeiites are not the result of alteration, differences in mantle source modal mineralogy, the presence of residual accessory mantle phases or fractional crystallization of such phases, assimilation of depleted [MORB] wall-rock, or accumulation/resorption of phenocrysts or xenocrysts. Incompatible trace element ratios (e.g., Nb/La, Nb/Th, La/Th, La/Hf, Ce/Pb) in Lanai tholeiites span considerable ranges and form coherent trends with each other and with absolute abundances of these elements. Large variations in La/Sm, La/Yb, and absolute REE abundances at constant MgO suggest that Lanai tholeiites formed by variable amounts of partial melting. However, large ranges in incompatible element ratios cannot be explained solely by variations in partial melting of a geochemically homogeneous source, but must reflect geochemical heterogeneities in the Lanai source. Partial melting modeling indicates that the mixed Lanai source is probably LREE-enriched [i.e., (La/Yb)CN>1]. One component in the Lanai source, exemplified by the low-abundance tholeiites, has markedly lower REE/HFSE, Th/HFSE, alkali/HFSE, and Ce/Pb ratios than other Lanai or Hawaiian tholeiites and may indicate the presence of recycled residual subduction zone materials in the Hawaiian plume source. The positive Eu anomalies that characterize the low-abundance Lanai tholeiites are not the result of plagioclase accumulation or assimilation but are a feature of this source component. Progressive temporal geochemical variations in Lanai tholeiites from 2 stratigraphic sections indicate that the source composition of these lavas probably evolved over time. This change could have resulted from a progressive decrease in the extent of partial melting of the Lanai source. The compositional variability of Lanai tholeiites suggests that geochemical heterogeneities in their source are larger than the scale of partial melting. Lanai tholeiites could not have formed by smaller degrees of partial melting of plume material than did the larger-volume Hawaiian shields. Therefore, volume differences between Hawaiian shields must be controlled primarily by differences in the volume of supplied plume material rather than by differences in the degree of partial melting. The premature cessation of eruptive activity at Lanai may be attributed to relatively large degrees of partial melting of a small plume.  相似文献   

6.
Water Content of Basalt Erupted on the ocean floor   总被引:1,自引:0,他引:1  
Deep sea pillow basalts dredged from the ocean floor show that vesicularity changes with composition as well as with depth. Alkalic basalts are more vesicular than tholeiitic basalts erupted at the same depth. The vesicularity data, when related to experimentally determined solubility of water in basalt, indicate that K-poor oceanic tholeiites originally contained about 0.25 percent water, Hawaiian tholeiites of intermediate K-content, about 0.5 percent water, and alkali-rich basalts, about 0.9 percent water. Analyses of fresh basalt pillows show a systematic increase of H2O+ as the rocks become more alkalic. K-poor oceanic tholeiites contain 0.06–0.42 percent H2O+, Hawaiian tholeiites, 0.31–0.60 percent H2O+, and alkali rich basalts 0.49–0.98 percent H2O+. The contents of K2O, P2O5, F, and Cl increase directly with an increase in H2O+ content such that at 1.0 weight percent H2O+, K2O is 1.58 percent, P2O5 is 0.55 percent, F is 0.07 percent, and Cl is 0.1 percent. The measured weight percent of deuterium on the rim of one Hawaiian pillow is –6.0 (relative to SMOW); this value, which is similar to other indications of magmatic water, suggests that no appreciable sea water was absorbed by the pillow during or subsequent to eruption on the ocean floor.Concentrations of volatile constituents in the alkali basalt melts relative to tholeiitic melts can be explained by varying degrees of partial melting of mantle material or by fractional crystallization of a magma batch.Publication authorized by the Director, U.S. Geological Survey.  相似文献   

7.
Tholeiites accompanying a majority of alkali basalts are restricted to the highly productive central part of the CECV plume activity in Vogelsberg and Hessian Depression. They mainly occur as quartz tholeiites which according to experiments of partial melting and material balances are products of olivine tholeiitic primary melts. The differentiation from olivine to quartz tholeiitic melts took place in lower crustal magma chambers where olivine tholeiitic melt intruded due to a density comparable with that of the country rocks. The fractionation due to separation of olivine and some clinopyroxene caused contamination of tholeiite magmas by tonalitic partial melts from the wall rocks of the magma chambers. The latter process is indicated by relatively high Rb, K and Pb and low Nb concentrations and by Nd, Sr and Pb isotopes. Contaminating crustal melts, which roughly attained a proportion of 10%, contained very low 143Nd/144Nd ratios from a Nd/Sm fractionation as old as 2.6 Ga. This is the first evidence from mafic rocks of this high age in the lower crust beneath Central Europe. Modelling with incompatible elements allows to recognize olivine tholeiites as products of about 1% partial melting of plume rocks consisting of 35% primitive and 65% depleted mantle materials. The production of tholeiites other than alkali basalts is restricted to the highest plume activity and the largest fraction of MORB type source rocks. Received: 10 December 1999 / Accepted: 23 June 2000  相似文献   

8.
A comprehensive model is developed to explain the major, trace element and strontium and neodymium isotopic characteristics of alkali basalts from Hawaii. The model is similar to that of Chen and Frey (1983) in that it requires mixing of a small melt fraction of MORB-source material with another component to generate the alkalic suite of a particular Hawaiian volcano. It differs from the Chen and Frey model in that the other end-member must be different from primitive mantle if it is to be consistent with both trace element and isotopic data. Alkali basalts and tholeiites from Kauai analyzed in this study show a nearly complete transition in Sr and Nd isotopes. There is a relatively well-constrained array on a Nd-Sr isotope correlation plot that can be explained by two-component mixing of Kauai tholeiite magma and a small amount of melt of East Pacific Rise source rock. After corrections are made for fractional crystallization (involving primarily clinopyroxene and olivine), the Sr and Ba concentrations of Kauai lavas plot along mixing curves defined by the above sources, providing positive tests of the mixing hypothesis. Implications of this model are: (1) the main source of Hawaiian shield-building tholeiites is a mixture of subducted crust, primitive mantle and depleted asthenosphere that has been homogenized prior to melting, (2) early alkalic volcanism (as at Loihi seamount) will be characterized by greater isotopic heterogeneity than will late-stage alkali basalt production, and (3) there are two fundamentally distinct types of alkalic lavas erupted towards the end of magmatism at a given Hawaiian volcano. One represents smaller degrees of melting of the same source that generated shield-building tholeiites (Kohala-type); the other derives from the mixed source discussed in this paper (Haleakala-, Kauai-type).  相似文献   

9.
The chemical composition of the Dharwar metavolcanic suite from Chitaldrug is found to be similar to that of early Precambrian metabasalts from Canadian and Australian Shields. Its low K2O content and the similarities in the ferromagnesium trace elements with those of oceanic olivine normative tholeiites indicate a low K2O oceanic type of original magma. It is suggested that a protocontinent having a thin crust approaching basic composition existed during the pre-Dharwar era.  相似文献   

10.
The chemical variations of the early mesozoic tholeiites from North-East American margin pointed out by the american authors are specified by means of multivariate statistical methods (Principal Component Analysis, Stepwise Discriminant Analysis, Multiple Regression). The highly significant correlation between chemical composition and latitude (R = 0.87) can be explained by an evolution of the initial magma from South to North. As in America, Moroccan High Atlas tholeiites are connected with the early opening of the North-Atlantic. By using these statistical methods, it appears that moroccan tholeiites are chemically related to New-Jersey — Connecticut tholeiites. This chemical positioning is compared to predrift reconstruction patterns.  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(23-24):4119-4138
Measurements of 238U-230Th-226Ra and 235U-231Pa disequilibria in a suite of tholeiitic-to-basanitic lavas provide estimates of porosity, solid mantle upwelling rate and melt transport times beneath Hawaii. The observation that (230Th/238U) > 1 indicates that garnet is required as a residual phase in the magma sources for all of the lavas. Both chromatographic porous flow and dynamic melting of a garnet peridotite source can adequately explain the combined U-Th-Ra and U-Pa data for these Hawaiian basalts. For chromatographic porous flow, the calculated maximum porosity in the melting zone ranges from 0.3–3% for tholeiites and 0.1–1% for alkali basalts and basanites, and solid mantle upwelling rates range from 40 to 100 cm yr−1 for tholeiites and from 1 to 3 cm yr−1 for basanites. For dynamic melting, the escape or threshold porosity is 0.5–2% for tholeiites and 0.1–0.8% for alkali basalts and basanites, and solid mantle upwelling rates range from 10 to 30 cm yr−1 for tholeiites and from 0.1 to 1 cm yr−1 for basanites. Assuming a constant melt productivity, calculated total melt fractions range from 15% for the tholeiitic basalts to 3% for alkali basalts and basanites.  相似文献   

12.
T. Agata 《Lithos》1994,33(4):241-263
The Asama igneous complex comprises layered mafic and ultramafic plutonic rocks exposed over about 500×6000 m in the Mikabu greenstone belt, Sambagawa metamorphic terrain of Mie Prefecture; its margins terminate by faults, and there is no trace of chilled rocks. The exposed layered sequence is about 460 m thick, and includes dunite, plagioclase wehrlite, olivine gabbro and two-pyroxene gabbro. The crystallization sequence of essential cumulus minerals is olivine, followed by plagioclase and clinopyroxene together, and finally the appearance of orthopyroxene. Olivine systematically varies in composition from Fo89 to Fo78 with stratigraphic height in the lower to middle portion of the layered sequence. The composition of clinopyroxene changes from Ca49Mg46Fe5 to Ca40Mg47Fe13 upward in the layered sequence; cumulus orthopyroxene, which occurs at the top of the exposed layered sequence, has a composition of Ca2Mg74Fe24. Cumulus chromite occurs as disseminated grains in peridotitic rocks, and tends to increase its Fe3+/(Cr+Al+Fe3+) ratio with stratigraphic height. The most aluminous chromite [Cr/(Cr+Al) = 0.48] occurs in dunite that crystallized shortly before plagioclase began to separate as an essential phase. The Cr/(Cr+Al) ratio of the most aluminous chromite, coupled with the crystallization order of essential minerals, suggests that the Asama parental magma was moderately enriched in plagioclase and clinopyroxene components in the normative mineral diagram plagioclase-clinopyroxene-orthopyroxene. It was similar to a Hawaiian tholeiite and different from the Bushveld and Great “Dyke” parental magmas that were more enriched in orthopyroxene component; it also differed from mid-oceanic ridge basalts that are more depleted in the orthopyroxene component. The Asama clinopyroxene and chromite show characteristically high TiO2 contents and are also similar to those in Hawaiian tholeiites. The Asama igneous complex probably resulted from the crystallization of a magma of a Hawaiian (oceanic-island) tholeiite composition and formed in an oceanic island regime.  相似文献   

13.
A wide compositional continuum of basalts has been erupted from near-ridge seamounts constructed on the Cocos Plate between the Clipperton and Orozco Francture Zones. They range from highly evolved to moderately primitive (3.0–7.8% MgO), LREE-enriched alkali basalts, to moderately evolved to near-primary (5.2–9.5% MgO) tholeiites indistinguishable from N-type MORB. The data set of 159 quench glass analyses exhibits a remarkably consistent variation in both major and trace element composition that is keyed to variations in (La/Sm). Modeling of potential liquid lines of descent at pressures ranging from 1 bar to 8 kbar shows that this covariation is partially due to systematic differences in liquid lines of descent, where the alkaline lavas have undergone substantially more high pressure clinopyroxene fractionation and substantially less low pressure plagioclase fractionation than the tholeiites. In addition, systematic variation in the composition of the more primitive glasses indicates that they were derived from mixing of discrete enriched and depleted melts in the heterogenous seamount mantle source at pressures of 8–10 kbar and greater, and that clinopyroxene may be a residual phase during partial melting. These results show that porous media flow in the seamount mantle source is minor and that melt transport is accomplished primarily through cracking and diking. This study supports suggestions that the general homogeneity of basalt along the EPR is due to mixing in sub-axial magma chambers and mush zones, with additional mixing during partial mantle melting and melt segregation.  相似文献   

14.
Melt Generation by Plumes: A Study of Hawaiian Volcanism   总被引:18,自引:9,他引:9  
The mantle plume underlying the Hawaiian Swell has been modellednumerically using a stationary steady axisymmetric plume undera solid conducting lid. A method of calculating the rate ofmelt production from the plume has been developed, and the totalmelt production rate, the residual depth anomaly and the geoidanomaly have been used to constrain the model. The plume hasa central potential temperature of 1558 ?C and the mechanicalboundary layer is 72 km thick. An average of 6?6% melting occursin a melt-producing region which has a vertical extent of 55km and a radial extent of 130 km to produce 0?16 km3/y of melt.A parameterization of melt composition has been developed thatis consistent with laboratory experiments, with models of MORBgeneration, and with primitive Hawaiian tholeiites containing 16% MgO. There is no evidence that the major and minor elementconcentrations in the source region of Hawaiian tholeiites differfrom those in the source region of MORB. The model is consistentwith the REE contents of Kilauean tholeiites if the source regionhas primitive REE contents. The viscosity of the low-viscositylayer is constrained to be 1016m2/s.  相似文献   

15.
The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in δD and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between δD and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between δD values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having δD values as low as ?100.δD values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary δD values were similar to those of submarine lavas.Extrapolations to possible unaltered δD values and H2O contents indicate that the primary δD values of most thoteiite and alkali basalts are near ?80 ± 5: the weight percentages of water are variable, 0.15–0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary δD values of ?80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth.  相似文献   

16.
On cursory examination of hand specimens and thin sections, the abyssal tholeiite in a dredge haul may appear to be uniform in composition. Chemical analyses of a considerable number of fragments, however, have always revealed the existence of regular compositional variation in them. The MgO content decreases with increasing SiO2. In abyssal tholeiites with relatively low Al2O3 contents, the SiO2, total iron, Na2O and P2O5 contents tend to increase and the MgO content tends to decrease with increasing iron/magnesia ratio, probably owing to crystallization differentiation.In a certain dredge haul, high-alumina abyssal tholeiites (with Al2O3 contents near or over 17%) occur in association with low-alumina abyssal tholeiites. The magma of high-alumina abyssal tholeiites would be generated from that of low-alumina abyssal tholeiites by differentiation at a depth around 30 km.In pillow lavas of abyssal tholeiite free from weathering and metamorphism, the chilled rim of the pillow usually has virtually the same chemical composition as the more crystalline core except for a decrease of K2O content toward the rim. On the other hand, the weathered rim of pillow lavas shows marked compositional change. The Fe2O3/FeO ratio of unweathered abyssal tholeiite is in the range of 0.1 to 0.3. This ratio and the H2O and H2O+ contents increase with advancing weathering.Lamont-Doherty Geological Observatory Contribution No. 1339  相似文献   

17.
橄榄石通常是玄武质岩浆最早结晶出的矿物之一,其化学成分可以很好地反演母岩浆成分、岩浆结晶分异、硫化物熔离等成岩及成矿信息。本文以土墩镁铁质-超镁铁质杂岩体为研究对象,采用电子探针对岩体中的橄榄石矿物颗粒进行化学成分测试。利用橄榄石的Fo值和其中Ni含量,计算得到土墩杂岩体母岩浆中Mg O含量约为12.95%,是一种富镁的玄武质岩浆。同时,定量模拟结果表明,土墩杂岩体母岩浆中硫化物熔离几乎与橄榄石结晶作用同时进行,早阶段由橄榄石结晶(分离结晶程度约2%)而导致硫化物的熔离程度为0.2%。随后,橄榄石分离结晶程度在6%~7%时,硫化物熔体的熔离程度仅为0.01%。这些表明土墩杂岩体发生过一定程度的硫化物熔离,但成矿前景不是很好。此外,部分数据显示出Ni-Fo的负相关性,表明少许富铁橄榄石和晶间硫化物熔浆发生了Fe-Ni物质交换反应,这对橄榄石的成分有重要影响。  相似文献   

18.
The population density of olivine phenocrysts of the tholeiites display an exponential variation, which is typical of igneous as well as contact metamorphic rocks. The exponential variation is explained by a new growth probability model, which is consistent with experimental work. The forsterite content of the olivine phenocrysts decreases with decreasing size. Various phenocryst features suggest that the tholeiites first crystallized slowly in a magma chamber, after which they underwent crystallization for a short period of time in a feeder dyke before eruption took place.  相似文献   

19.
The Niutoushan basaltic cone, consisting of subalkali (quartz-tholeiite and olivine-tholeiite) and alkali basalts, is Late Tertiary in age. Its major characteristics are generalized as follows:
  1. Both early subalkali and late alkali bali basalts are formed under the same geological environment.
  2. The continuity in chemical composition from subalkali to alkali and the low FeO/MgO in alkali basalts show that they are the products of cognate magmatic differentiation.
  3. The change from low REE abundance and weak enrichment of LREE in subalkali to high REE abundance and strong enrichment of LREE in alkali basalts indicates obvious REE enrichment and fractionation during magmatic differentiation. Weak positive Eu anomalies in the REE patterns are indicative of their formation under low oxygen fugacity conditions.
  4. According to the calculated values, 70–75% of the primary olivine tholeiitic magma had been separated as subalkaline basaltic magma, the rest residual magma became alkaline basaltic magma. This result is consistent to the field observation that the outcrop area of subalkali basalts is four times as much as that of alkali basalts.
  5. The basaltic rocks of Niutoushan show an S-type distribution straddling the thermal barrier on Ol′-Ne′-Qu′ diagram and an evolution tendency for Ne to increase with increasing FeO/MgO. This is in agreement with the melting experimental data on olivine basalts at 10–20 kb.
  6. Mantle-derived inclusions (spinel lherzolite) in this area occur in both alkali olivine basalts and olivine tholeiites. The latter is of extremely rare occurrence. The formation temperature and pressure of the inclusions in alkalibasalts and olivine tholeiites have been calculated. The results show that the alkaline basaltic magma was separated from the subalkaline basaltic magma at about 20 kb.
Basaltic rocks in Niutoushan were formed through the so-called “high pressure differentiation”, that is, at about 20 kb the crystallization of clinopyroxene and orthpyroxene resulted in the separation of subalkaline basaltic magma from the primary olivine tholeiitic magma, and then the residue gradually became alkaline olivine basaltic magma.  相似文献   

20.
Hiroaki Sato 《Lithos》1977,10(2):113-120
Available NiO analyses of olivine in peridotites of probable mantle origin are consistent in giving values around 0.40 weight per cent. Assuming that basaltic magma forming from the mantle was in equilibrium with such peridotitic olivine, the NiO content of primary basaltic magmas is estimated to be about 0.030–0.050 weight per cent. The fractionation behaviour of nickel in basaltic magma due to the crystallization of olivine has been calculated using constant NiMg and FeMg exchange partition coefficients between olivine and magma. It is shown that the NiO content of both magma and olivine decreases by 50 per cent after fractional crystallization of 6–12 per cent of olivine. The nickel distribution in some basaltic rocks and olivines is examined in the light of these results, and it is suggested that basaltic magmas, such as some of the ocean-floor basalt and the Hawaiian tholeiite and alkali basalts, represent primary magmas from mantle peridotites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号