首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Random Forests (RF) algorithm is a machine learning method that has recently been demonstrated as a viable technique for data-driven predictive modeling of mineral prospectivity, and thus, it is instructive to further examine its usefulness in this particular field. A case study was carried out using data from Catanduanes Island (Philippines) to investigate further (a) if RF modeling can be used for data-driven modeling of mineral prospectivity in areas with few (i.e., <20) mineral occurrences and (b) if RF modeling can handle predictor variables with missing values. We found that RF modeling outperforms evidential belief (EB) modeling of prospectivity for hydrothermal Au–Cu deposits in Catanduanes Island, where 17 hydrothermal Au–Cu prospects are known to exist. Moreover, just like EB modeling, RF modeling allows analysis of the spatial relationships between known prospects and individual layers of predictor data. Furthermore, RF modeling can handle missing values in predictor data through an RF-based imputation technique whereas in EB modeling, missing values are simply represented by maximum uncertainty. Therefore, the RF algorithm is a potentially useful method for data-driven predictive modeling of mineral prospectivity in regions with few (i.e., <20) occurrences of mineral deposits of the type sought. However, further testing of the method in other regions with few mineral occurrences is warranted to fully determine its usefulness in data-driven predictive modeling of mineral prospectivity.  相似文献   

2.
Index overlay and Boolean logic are two techniques customarily applied for knowledge-driven modeling of prospectivity for mineral deposits, whereby weights of values in evidential maps and weights of every evidence map are assigned based on expert opinion. In the Boolean logic technique for mineral prospectivity modeling (MPM), threshold evidential values for creating binary maps are defined based on expert opinion as well. This practice of assigning weights based on expert opinion involves trial-and-error and introduces bias in evaluating relative importance of both evidential values and individual evidential maps. In this paper, we propose a data-driven index overlay MPM technique whereby weights of individual evidential maps are derived from data. We also propose a data-driven Boolean logic MPM technique, whereby thresholds for creating binary maps are defined based on data. For assigning weights and defining thresholds in these proposed data-driven MPM techniques, we applied a prediction-area plot from which we can estimate the predictive ability of each evidential map with respect to known mineral occurrences, and we use that predictive ability estimate to assign weights to evidential map and to select thresholds for generating binary predictor maps. To demonstrate these procedures, we applied them to an area in the Kerman province in southeast Iran as a MPM case study for porphyry-Cu deposits.  相似文献   

3.

In data-driven mineral prospectivity mapping, a statistical model is established to represent the spatial relationship between layers of metallogenic evidence and locations of known mineral deposits, and then, the former are integrated into a mineral prospectivity model using the established model. Establishment of a data-driven mineral prospectivity model can be regarded as a process of searching for the optimal integration of layers of metallogenic evidence in order to maximize the spatial relationship between mineral prospectivity and the locations of known mineral deposits. Mineral prospectivity can be simply defined as the weighted sum of layers of metallogenic evidence. Then, the optimal integration of the layers of evidence can be determined by optimizing weight coefficients of the layers of evidence to maximize the area under the curve (AUC) of the defined model. To this end, a bat algorithm-based model is proposed for data-driven mineral prospectivity mapping. In this model, the AUC of the model is used as the objective function of the bat algorithm, and the ranges of the weight coefficients of layers of evidence are used to define the search space of the bat population, and the optimal weight coefficients are then automatically determined through the iterative search process of the bat algorithm. The bat algorithm-based model was used to map mineral prospectivity in the Helong district, Jilin Province, China. Because of the high performance of the traditional logistic regression model for data-driven mineral prospectivity mapping, it was used as a benchmark model for comparison with the bat algorithm-based model. The result shows that the receiver operating characteristic (ROC) curve of the bat algorithm-based model is coincident with that of the logistic regression model in the ROC space. The AUC of the bat algorithm-based model (0.88) is slightly larger than that of the logistic regression model (0.87). The optimal threshold for extracting mineral targets was determined by using the Youden index. The mineral targets optimally delineated by using the bat algorithm-based model and logistic regression model account for 8.10% and 11.24% of the study area, respectively, both of which contain 79% of the known mineral deposits. These results indicate that the performance of the bat algorithm-based model is comparable with that of the logistic regression model in data-driven mineral prospectivity mapping. Therefore, the bat algorithm-based model is a potentially useful high-performance data-driven mineral prospectivity mapping model.

  相似文献   

4.
In this paper, we describe new fuzzy models for predictive mineral potential mapping: (1) a knowledge-driven fuzzy model that uses a logistic membership function for deriving fuzzy membership values of input evidential maps and (2) a data-driven model, which uses a piecewise linear function based on quantified spatial associations between a set of evidential evidence features and a set of known mineral deposits for deriving fuzzy membership values of input evidential maps. We also describe a graphical defuzzification procedure for the interpretation of output fuzzy favorability maps. The models are demonstrated for mapping base metal deposit potential in an area in the south-central part of the Aravalli metallogenic province in the state of Rajasthan, western India. The data-driven and knowledge-driven models described in this paper predict potentially mineralized zones, which occupy less than 10% of the study area and contain at least 83% of the model and validation base metal deposits. A cross-validation of the favorability map derived from using one of the models with the favorability map derived from using the other model indicates a remarkable similarity in their results. Both models therefore are useful for predicting favorable zones to guide further exploration work.  相似文献   

5.
This paper describes a GIS-based application of a radial basis functional link net (RBFLN) to map the potential of SEDEX-type base metal deposits in a study area in the Aravalli metallogenic province (western India). Available public domain geodata of the study area were processed to generate evidential maps, which subsequently were encoded and combined to derive a set of input feature vectors. A subset of feature vectors with known targets (i.e., either known mineralized or known barren locations) was extracted and divided into (a) a training data set and (b) a validation data set. A series of RBFLNs were trained to determine the network architecture and estimate parameters that mapped the maximum number of validation vectors correctly to their respective targets. The trained RBFLN that gave the best performance for the validation data set was used for processing all feature vectors. The output for each feature vector is a predictive value between 1 and 0, indicating the extent to which a feature vector belongs to either the mineralized or the barren class. These values were mapped to generate a predictive classification map, which was reclassified into a favorability map showing zones with high, moderate and low favorability for SEDEX-type base metal deposits in the study area. The method demarcates successfully high favorability zones, which occupy 6% of the study area and contain 94% of the known base metal deposits.  相似文献   

6.
This paper presents mineral prospectivity mapping to identify potential new exploration ground for polymetallic Sn–F–REE mineralization associated with the Bushveld granites of the Bushveld Igneous Complex, South Africa. The Lebowa Granite Suite, commonly known as the Bushveld granites, is host to a continuum of polymetallic mineralization with a wide range of metal assemblages (Sn–Mo–W–Cu–Pb–Zn–As–Au–Ag–Fe–F–U–REE), ranging from a high-temperature to a low-temperature magmatic hydrothermal mineralizing environment. The prospectivity map was generated by fuzzy logic modeling and a selection of targeting criteria (or spatial proxies) based on a conceptual mineral system highlighting critical processes responsible for the formation of the polymetallic mineralization. The spatial proxies include proximity to differentiated granites (as heat and metal-rich fluid sources), Rb geochemical map (fluid-focusing mechanism such as fractionation process), principal component maps (PC 4 Y–Th and PC 14 Sn–W, fluid pathways for both high- and low-temperature mineralization) and proximity to roof rocks (traps for fluids). Logarithmic functions were used to rescale rasterized evidential maps into continuous fuzzy membership scores in a range of [0, 1]. The evidential maps were combined in two-staged integration matrix using fuzzy AND, OR and gamma operators to produce the granite-related polymetallic Sn–F–(REE) prospectivity map. The conceptual mineral system model and corresponding prospectivity model developed in this study yielded an encouraging result by delineating the known mineral deposits and occurrences of Sn–F–(REE) mineralization that were not used to assign weights to the evidential maps. The prospectivity model predicted, on average, 77% of the known mineral occurrences in the BIC (i.e., 56 of 73 Sn occurrences, 12 of 15 F occurrences and 6 of 8 REE occurrences). Based on this validation, 13 new targets were outlined in this study.  相似文献   

7.
Data-driven prospectivity modelling of greenfields terrains is challenging because very few deposits are available and the training data are overwhelmingly dominated by non-deposit samples. This could lead to biased estimates of model parameters. In the present study involving Random Forest (RF)-based gold prospectivity modelling of the Tanami region, a greenfields terrain in Western Australia, we apply the Synthetic Minority Over-sampling Technique to modify the initial dataset and bring the deposit-to-non-deposit ratio closer to 50:50. An optimal threshold range is determined objectively using statistical measures such as the data sensitivity, specificity, kappa and per cent correctly classified. The RF regression modelling with the modified dataset of close to 50:50 sample ratio of deposit to non-deposit delineates 4.67% of the study area as high prospectivity areas as compared to only 1.06% by the original dataset, implying that the original “sparse” dataset underestimates prospectivity.  相似文献   

8.
This paper outlines the process taken to create two separate gold prospectivity maps. The first was created using a combination of several knowledge-driven (KD) techniques. The second was created using a relatively new classification method called random forests (RF). The purpose of this study was to examine the results of the RF technique and to compare the results to that of the KD model. The datasets used for the creation of evidence maps for the gold prospectivity mapping include a comprehensive lake sediment geochemical dataset, interpreted geological structures (form lines), mapped and interpreted faults, lithology, topographic features (lakes), and known Au occurrences. The RF method performed well in that the gold prospectivity map created was a better predictor of the known Au occurrences than the KD gold prospectivity map. This was further validated by a fivefold repetition using a subset of the input training areas. Several advantages to the use of RF include (1) the ability to take both continuous and/or categorical data as variable inputs, (2) an internal, unbiased estimation of the mapping error (out-of-bag error) removing the need for a cross-validation of the final outputs to determine accuracy, and (3) the estimation of importance of each input variable. Efficiency of prediction curves illustrates that the RF method performs better than the KD method. The success rate is significantly higher for the RF method than for the KD method.  相似文献   

9.
Harris  J. R.  Wilkinson  L.  Heather  K.  Fumerton  S.  Bernier  M. A.  Ayer  J.  Dahn  R. 《Natural Resources Research》2001,10(2):91-124
A Geographic Information System (GIS) is used to prepare and process digital geoscience data in a variety of ways for producing gold prospectivity maps of the Swayze greenstone belt, Ontario, Canada. Data used to produce these maps include geologic, geochemical, geophysical, and remotely sensed (Landsat). A number of modeling methods are used and are grouped into data-driven (weights of evidence, logistic regression) and knowledge-driven (index and Boolean overlay) methods. The weights of evidence (WofE) technique compares the spatial association of known gold prospects with various indicators (evidence maps) of gold mineralization, to derive a set of weights used to produce the final gold prospectivity map. Logistic regression derives statistical information from evidence maps over each known gold prospect and the coefficients derived from regression analysis are used to weight each evidence map. The gold prospectivity map produced from the index overlay process uses a weighting scheme that is derived from input by the geologist, whereas the Boolean method uses equally weighted binary evidence maps.The resultant gold prospectivity maps are somewhat different in this study as the data comprising the evidence maps were processed purposely differently for each modeling method. Several areas of high gold potential, some of which are coincident with known gold prospects, are evident on the gold prospectivity maps produced using all modeling methods. The majority of these occur in mafic rocks within high strain zones, which is typical of many Archean greenstone belts.  相似文献   

10.
The Southern Uplands-Down-Longford Terrane in southeast Northern Ireland is prospective for Caledonian-age, turbidite-hosted orogenic gold mineralisation with important deposits at Clontibret in the Republic of Ireland and in Scotland. Geochemical and geophysical data from the DETI-funded Tellus project have been used, in conjunction with other spatial geoscience datasets, to map the distribution of prospectivity for this style of mineralisation over this terrane. A knowledge-based fuzzy logic modelling methodology using Arc Spatial Data modeller was utilised. The prospectivity analysis has identified several areas prospective for turbidite-hosted gold mineralisation, comparable to that at Clontibret and gold occurrences in the Southern Uplands of Scotland. A number of these either coincide with known bedrock gold occurrences or with areas considered prospective and targeted by previous exploration work, validating the predictive capability of the exploration model devised and its translation into a GIS-based prospectivity model. The results of the modelling suggest that as in other parts of the Southern Uplands the coincidence of regional strike-parallel structures and intersecting transverse faults are highly prospective, as these are likely to create zones of anomalous stress for fluid flow and deposit formation. Those areas in which there are no known gold occurrences are considered to be favourable targets for further exploration and should be followed up.  相似文献   

11.
Mineral exploration activities require robust predictive models that result in accurate mapping of the probability that mineral deposits can be found at a certain location. Random forest (RF) is a powerful machine data-driven predictive method that is unknown in mineral potential mapping. In this paper, performance of RF regression for the likelihood of gold deposits in the Rodalquilar mining district is explored. The RF model was developed using a comprehensive exploration GIS database composed of: gravimetric and magnetic survey, a lithogeochemical survey of 59 elements, lithology and fracture maps, a Landsat 5 Thematic Mapper image and gold occurrence locations. The results of this study indicate that the use of RF for the integration of large multisource data sets used in mineral exploration and for prediction of mineral deposit occurrences offers several advantages over existing methods. Key advantages of RF include: (1) the simplicity of parameter setting; (2) an internal unbiased estimate of the prediction error; (3) the ability to handle complex data of different statistical distributions, responding to nonlinear relationships between variables; (4) the capability to use categorical predictors; and (5) the capability to determine variable importance. Additionally, variables that RF identified as most important coincide with well-known geologic expectations. To validate and assess the effectiveness of the RF method, gold prospectivity maps are also prepared using the logistic regression (LR) method. Statistical measures of map quality indicate that the RF method performs better than LR, with mean square errors equal to 0.12 and 0.19, respectively. The efficiency of RF is also better, achieving an optimum success rate when half of the area predicted by LR is considered.  相似文献   

12.
The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 ‘nondeposits’ were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input data showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area. An erratum to this article can be found at  相似文献   

13.
Weights of evidence (WofE) modeling usually is applied to map mineral potential in areas with large number of deposits/prospects. In this paper, WofE modeling is applied to a case study area measuring about 920 km2 with 12 known porphyry copper prospects. A pixel size of 100 m × 100 m was used in the spatial data analyses to represent in a raster-based GIS lateral extents of prospects and of geological features considered as spatial evidence. Predictor maps were created based on (a) estimates of studentized values of positive spatial association between prospects and spatial evidence; (b) proportion of number of prospects in zones where spatial evidence is present; and (c) geological interpretations of positive spatial association between prospects and spatial evidence. Uncertainty because of missing geochemical evidence is shown to have an influence on tests of assumption of conditional independence (CI) among predictor maps with respect to prospects. For the final predictive model, assumption of CI is rejected based on omnibus test but is accepted based on a new omnibus test. The final predictive model, which delineates 30% of study area as zones with potential for porphyry copper, has 83% success rate and 73% prediction rate. The results demonstrate plausibility of WofE modeling of mineral potential in large areas with small number of mineral prospects.  相似文献   

14.
This paper combines knowledge- and data-driven prospectivity mapping approaches by using the receiver operating characteristics (ROC) spatial statistical technique to optimize the process of rescaling input datasets and the process of data integration when using a fuzzy logic prospectivity mapping method. The methodology is tested in an active mineral exploration terrain within the Paleoproterozoic Peräpohja Belt (PB) in the Northern Fennoscandian Shield, Finland. The PB comprises a greenschist to amphibolite facies, complexly deformed supracrustal sequence of variable quartzites, mafic volcanic rocks and volcaniclastic rocks, carbonate rocks, black shales, mica schists and graywackes. These formations were deposited on Archean basement and 2.44 Ga layered intrusions, during the multiple rifting of the Archean basement (2.44–1.92 Ga). Younger intrusive units in the PB comprise 2.20–2.13 Ga gabbroic sills or dikes and 1.98 Ga A-type granites. Metamorphism and complex deformation of the PB took place during the Svecofennian orogeny (1.9–1.8 Ga) and were followed by intrusions of post-orogenic granitoids (1.81–1.77 Ga). The recent mineral exploration activities have indicated several gold-bearing mineral occurrences within the PB. The Rompas Au-U mineralization is hosted within deformed and metamorphosed calc-silicate veins enclosed within mafic volcanic rocks and contains uranium-bearing zones without gold and very high-grade (>10,000 g/t Au) gold pockets with uraninite and uraninite-pyrobitumen nodules. In the vicinity of the Rompas, a magnesium skarn hosted disseminated-stockwork gold mineralization was also recognized at the Palokas-Rajapalot prospect. The exploration criteria translated into a fuzzy logic prospectivity model included data derived from regional till geochemistry (Fe, Cu, Co, Ni, Au, Te, K), high-resolution airborne geophysics (magnetic field total intensity, electromagnetic, gamma radiation), ground gravity and regional bedrock map (structures). The current exploration licenses and exploration drilling sites for gold were used to validate the knowledge-driven mineral prospectivity model.  相似文献   

15.
Mineral prospectivity mapping is an important preliminary step for mineral resource exploration. It has been widely applied to distinguish areas of high potential to host mineral deposits and to minimize the financial risks associated with decision making in mineral industry. In the present study, a maximum entropy (MaxEnt) model was applied to investigate its potential for mineral prospectivity analysis. A case study from the Nanling tungsten polymetallic metallogenic belt, South China, was used to evaluate its performance. In order to deal with model over-fitting, varying levels of β j -regularization were set to determine suitable β value based on response curves and receiver operating characteristic (ROC) curves, as well as via visual inspections of prospectivity maps. The area under the ROC curve (AUC = 0.863) suggests good performance of the MaxEnt model under the condition of balancing model complexity and generality. The relative importance of ore-controlling factors and their relationships with known deposits were examined by jackknife analysis and response curves. Prediction–area (P–A) curves were used to determine threshold values for demarcating high probability of tungsten polymetallic deposit occurrence within small exploration area. The final predictive map showed that high favorability zones occupy 14.5% of the study area and contain 85.5% of the known tungsten polymetallic deposits. Our study suggests that the MaxEnt model can be efficiently used to integrate multisource geo-spatial information for mineral prospectivity analysis.  相似文献   

16.
A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping   总被引:1,自引:0,他引:1  
This paper describes a hybrid fuzzy weights-of-evidence (WofE) model for mineral potential mapping that generates fuzzy predictor patterns based on (a) knowledge-based fuzzy membership values and (b) data-based conditional probabilities. The fuzzy membership values are calculated using a knowledge-driven logistic membership function, which provides a framework for treating systemic uncertainty and also facilitates the use of multiclass predictor maps in the modeling procedure. The fuzzy predictor patterns are combined using Bayes’ rule in a log-linear form (under an assumption of conditional independence) to update the prior probability of target deposit-type occurrence in every unique combination of predictor patterns. The hybrid fuzzy WofE model is applied to a regional-scale mapping of base-metal deposit potential in the south-central part of the Aravalli metallogenic province (western India). The output map of fuzzy posterior probabilities of base-metal deposit occurrence is classified subsequently to delineate zones with high-favorability, moderate favorability, and low-favorability for occurrence of base-metal deposits. An analysis of the favorability map indicates (a) significant improvement of probability of base-metal deposit occurrence in the high-favorability and moderate-favorability zones and (b) significant deterioration of probability of base-metal deposit occurrence in the low-favorability zones. The results demonstrate usefulness of the hybrid fuzzy WofE model in representation and in integration of evidential features to map relative potential for mineral deposit occurrence.  相似文献   

17.
An application of the theory of fuzzy sets to the mapping of gold mineralization potential in the Baguio gold mining district of the Philippines is described. Proximity to geological features is translated into fuzzy membership functions based upon qualitative and quantitative knowledge of spatial associations between known gold occurrences and geological features in the area. Fuzzy sets of favorable distances to geological features and favorable lithologic formations are combined using fuzzy logic as the inference engine. The data capture, map operations, and spatial data analyses are carried out using a geographic information system. The fuzzy predictive maps delineate at least 68% of the known gold occurrences that are used to generate the model. The fuzzy predictive maps delineate at least 76% of the unknown gold occurrences that are not used to generate the model. The results are highly comparable with the results of previous stream-sediment geochemical survey in the area. The results demonstrate the usefulness of a geologically constrained fuzzy set approach to map mineral potential and to redirect surficial exploration work in the search for yet undiscovered gold mineralization in the mining district. The method described is applicable to other mining districts elsewhere.  相似文献   

18.
The representation of geoscience information for data integration   总被引:17,自引:0,他引:17  
In mineral exploration, resource assessment, or natural hazard assessment, many layers of geoscience maps such as lithology, structure, geophysics, geochemistry, hydrology, slope stability, mineral deposits, and preprocessed remotely sensed data can be used as evidence to delineate potential areas for further investigation. Today's PC-based data base management systems, statistical packages, spreadsheets, image processing systems, and geographical information systems provide almost unlimited capabilities of manipulating data. Generally such manipulations make a strategic separation of spatial and nonspatial attributes, which are conveniently linked in relational data bases. The first step in integration procedures usually consists of studying the individual charateristics of map features and interrelationships, and then representing them in numerical form (statistics) for finding the areas of high potential (or impact).Data representation is a transformation of our experience of the real world into a computational domain. As such, it must comply with models and rules to provide us with useful information. Quantitative representation of spatially distributed map patterns or phenomena plays a pivotal role in integration because it also determines the types of combination rules applied to them.Three representation methods—probability measures, Dempster-Shafer belief functions, and membership functions in fuzzy sets—and their corresponding estimation procedures are presented here with analyses of the implications and of the assumptions that are required in each approach to thematic mapping. Difficulties associated with the construction of probability measures, belief functions, and membership functions are also discussed; alternative procedures to overcome these difficulties are proposed. These proposed techniques are illustrated by using a simple, artificially constructed data set.  相似文献   

19.
Large amounts of digital data must be analyzed and integrated to generate mineral potential maps, which can be used for exploration targeting. The quality of the mineral potential maps is dependent on the quality of the data used as inputs, with higher quality inputs producing higher quality outputs. In mineral exploration, particularly in regions with little to no exploration history, datasets are often incomplete at the scale of investigation with data missing due to incomplete mapping or the unavailability of data over certain areas. It is not always clear that datasets are incomplete, and this study examines how mineral potential mapping results may differ in this context. Different methods of mineral potential mapping provide different ways of dealing with analyzing and integrating incomplete data. This study examines the weights of evidence (WofE), evidential belief function and fuzzy logic methods of mineral potential mapping using incomplete data from the Carajás mineral province, Brazil to target for orogenic gold mineralization. Results demonstrate that WofE is the best one able to predict the location of known mineralization within the study area when either complete or unacknowledged incomplete data are used. It is suggested that this is due to the use of Bayes’ rule, which can account for “missing data.” The results indicate the effectiveness of WofE for mineral potential mapping with incomplete data.  相似文献   

20.
Radial basis function link neural network (RBFLN) and fuzzy-weights of evidence (fuzzy-WofE) methods were used to assess regional-scale prospectivity for chromite deposits in the Western Limb and the Nietverdiend layered mafic intrusion of the Bushveld Complex in South Africa. Five predictor maps derived from geological, geochemical and geophysical data were processed in a GIS environment and used as spatial proxy for critical processes that were most probably responsible for the formation of the chromite deposits in the study area. The RBFLN was trained using input feature vectors that correspond to known deposits, prospects and non-deposits. The training was initiated by varying the number of radial basis functions (RBFs) and iterations. The results of training the RBFLN provided optimum number of RBFs and iterations that were used for classification of the input feature vectors. The results show that the network classified 73% of the validation deposits into highly prospective areas for chromite deposit, covering 6.5% of the study area. The RBFLN entirely classified all the non-deposit validation points into low prospectivity areas, occupying 86.6% of the study area. In general, the efficiency of the RBFLN in classifying the validation deposits and non-deposits indicates the degree of spatial relationship between the input feature vectors and the training points, which represent chrome mines and prospects. The RBFLN and fuzzy-WofE analyses used in this study are important in guiding identification of regional-scale prospect areas where further chromite exploration can be carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号