首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
采用等温蒸发法研究简单四元体系Na+//Cl-,CO3^2-,B4O7^2--H2O273K时的介稳相平衡,并测定该体系273K平衡液相中各组分的溶解度及密度,该体系的介稳相图和密度组成图显示:该四元体系在273K时的相图由3条溶解度单变量线、3个结晶区及1个共饱和点组成。体系属简单共饱型,无复盐或固溶体形成,3个结晶区分别对应单盐Na2CO3·10H2O,NaCl和Na2B4O7·10H2O。共饱点E处于Na2CO3·10H2O,NaCl及NaB4O7·10H2O3盐共饱和,所对应的平衡液相组成为w(Na2CO3)=6.81%,w(NaCl)=21.69%,w(Na2B4O7)=0.65%,w(H2O)=70.85%。研究体系在273K下,Na2CO3·10H2O是碳酸钠盐的唯一析出形式,且硼酸钠对碳酸钠有盐析作用。  相似文献   

2.
采用等温蒸发法研究简单四元体系Na+//CI-,CO32-,B4O72---H2O 273 K时的介稳相平衡,并测定该体系273 K平衡液相中各组分的溶解度及密度,该体系的介稳相图和密度组成图显示:该四元体系在273 K时的相图由3条溶解度单变量线、3个结晶区及1个共饱和点组成.体系属简单共饱型,无复盐或固溶体形成,3个结晶区分别对应单盐Na2CO3?10H2O,NaCI和Na2B4O7?10H2O.共饱点E处于Na2CO3?10H2O,NaCI及Na2B4O,?10H2O3盐共饱和,所对应的平衡液相组成为ω(Na2CO3)=6.81%,ω(NaCl)=21.69%,ω(Na2B4O7)=0.65%.ω(H20)=70.85%.研究体系在273 K下,Na2CO3?10H2O是碳酸钠盐的唯一析出形式,且硼酸钠对碳酸钠有盐析作用.  相似文献   

3.
采用等温蒸发法研究简单四元体系Na ∥Cl-,CO32-,B4O72--H2O273K时的介稳相平衡,并测定该体系273K平衡液相中各组分的溶解度及密度,该体系的介稳相图和密度组成图显示:该四元体系在273K时的相图由3条溶解度单变量线、3个结晶区及1个共饱和点组成。体系属简单共饱型,无复盐或固溶体形成,3个结晶区分别对应单盐Na2CO3·10H2O,NaCl和Na2B4O7·10H2O。共饱点E处于Na2CO3·10H2O,NaCl及Na2B4O7·10H2O3盐共饱和,所对应的平衡液相组成为w(Na2CO3)=6.81%,w(NaCl)=21.69%,w(Na2B4O7)=0.65%,w(H2O)=70.85%。研究体系在273K下,Na2CO3·10H2O是碳酸钠盐的唯一析出形式,且硼酸钠对碳酸钠有盐析作用。  相似文献   

4.
桑世华  李明  李恒  孙明亮 《地质学报》2010,84(11):1704-1707
采用等温溶解平衡法研究了288K时Li+, Mg2+//SO2-4, B4O2-7- H2O四元体系的固液相平衡关系,测定了该四元体系在288K时平衡液相的溶解度和密度。依据实验测定的平衡溶解度数据及对应的平衡固相,绘制了该四元体系的平衡相图及密度组成图。研究结果表明:交互四元体系Li+, Mg2+//SO2-4, B4O2-7- H2O 288K时平衡相图中有2个共饱点,5条单变量曲线,4个结晶区对应的平衡固相分别为Li2B4O7·3H2O,Li2SO4·H2O,MgB4O7·9H2O和MgSO4·7H2O。  相似文献   

5.
采用等温溶解平衡法研究了288K时Li+, Mg2+//SO2-4, B4O2-7- H2O四元体系的固液相平衡关系,测定了该四元体系在288K时平衡液相的溶解度和密度.依据实验测定的平衡溶解度数据及对应的平衡固相,绘制了该四元体系的平衡相图及密度组成图.研究结果表明:交互四元体系Li+, Mg2+//SO2-4, B4O2-7- H2O 288K时平衡相图中有2个共饱点,5条单变量曲线,4个结晶区对应的平衡固相分别为Li2B4O7·3H2O,Li2SO4·H2O,MgB4O7·9H2O和MgSO4·7H2O.  相似文献   

6.
根据对西藏扎布耶盐湖四元子体系L i /C l-,CO32-,B4O72--H2O 298 K介稳平衡实验数据,绘制出的介稳平衡相图及物化性质(密度、pH值、电导率、折光率)组成图的研究结果表明:该四元体系属简单共饱型,无复盐或固溶体形成;其溶解度等温图含有一个共饱点、3条单变量曲线和3个结晶相区;3个结晶相区分别对应为L i2B4O7.3H2O,L i2CO3和L iC lH2O。  相似文献   

7.
采用等温蒸发法研究了四元体系K 、Na ∥CO2-3、HCO-3-H2O 35℃相平衡及平衡液相的密度、电导率、折光率和 pH 值, 测定了该四元体系在35℃条件下平衡溶液的浓度及物化性质. 根据实验数据绘制了相应的平衡相图. 研究发现: 该体系平衡过程中有复盐KNaCO3形成.  相似文献   

8.
采用等温溶解平衡法研究了五元体系Li^ ,K^ //CI^-,B4O7%2-,CO3^2-H2O在298K时相关系和平衡液相物化,性质对组分的溶解度以及密度、折光度、粘度、电导率和pH值进行了测定,并绘制了相关相图,得到5个结晶相区和3个共饱点。该体系没有固溶体和复盐生成,为简单共饱和型体系。  相似文献   

9.
采用等温溶解平衡法开展了三元体系K+,Mg2+∥B4O72--H2O 348K的稳定相平衡研究,获得溶解度数据及平衡液相的密度,折光率,pH值。根据溶解度数据绘制了三元体系稳定相图。该三元体系在348K时的稳定相图含有一个共饱点E、两条单变量曲线AE,BE和两个结晶相区MgB4O7.9H2O(AECA)和K2B4O7·4H2O(BEDB)。共饱点的平衡固相组成为MgB4O7·9H2O和K2B4O7·4H2O,对应的平衡液相组成为w(K2B4O7)=42.28%、w(MgB4O7)=8.11%。研究结果表明,该三元体系属于简单共饱和型,无复盐和固溶体形成。K2B4O7·4H2O和MgB4O7·9H2O互相存在盐溶作用,使得这两种盐的溶解度明显增大。平衡液相的密度、折光率均随溶液中K2B4O7质量分数的增大而增大。  相似文献   

10.
四元体系K_2SO_4-K_2B_4O_7-K_2CO_3-H_2O 273K时介稳相平衡研究   总被引:1,自引:1,他引:0  
采用等温蒸发法研究K2SO4-K2B4O7-K2CO3-H2O四元体系在低温273K时的介稳固液相平衡关系,测定了介稳平衡液相的溶解度和密度。研究发现,该四元体系273K时的介稳平衡相图有3个固相结晶相区分别为K2SO4,K2B4O7.4H2O和K2CO3.3/2H2O;3条单变量曲线E1E,E2E和E3E;一个共饱点E,在共饱点E处的液相中各盐的溶解度分别为K2CO3(43.46%),K2SO4(2.52%)和K2B4O7(3.10%);研究结果表明K2CO3对K2B4O7和K2SO4有强烈的盐析作用。实验证明在富含硼钾的扎布耶盐湖卤水中,低温平衡条件下硫酸钾和硼酸钾极易从溶液中结晶析出,而碳酸钾则由于溶解度大,介稳性强,即使在低温条件下也难以从溶液中析出。  相似文献   

11.
The addition of phosphorus to H2O-saturated and initially subaluminous haplogranitic (Qz–Ab–Or) compositions at 200 MPa(H2O) promotes expansion of the liquidus field of quartz, a marked decrease of the solidus temperature, increased solubility limits of H2O in melt at low phosphorus concentrations, and fractionation of melt out of the haplogranite plane (projected along an Or28 isopleth) toward a peralkaline, silica-poor but quartz-saturated minimum composition. The partition coefficient for P2O5 between aqueous vapor and melt with an ASI (aluminum saturation index, mol Al/[mol Na+K])=1 is negligible (0.06), and consequently so are the effects of phosphorus on other melt-vapor relations involving major components. Phosphorus becomes more soluble in vapor, however, as the concentration of a NaPO3 component increases via the fractionation of melt by crystallization of quartz and feldspar. The experimental results here corroborate existing concepts regarding the interaction of phosphorus with alkali aluminosilicate melt: phosphorus has an affinity for alkalis and Al, but not Si. Phosphorus is incorporated into alkali feldspars by the exchange component AlPSi-2. For subaluminous compositions (ASI=1), the distribution coefficient of phosphorus between alkali feldspar and melt, D[P]Af/m, is 0.3. This value increases to D[P]Af/m=1.0 at a melt ASI value of 1.3. The increase in D[P]Af/m with ASI is expected from the fact that excess Al promotes the AlPSi-2 exchange. With this experimental data, the P2O5 content of feldspars and whole rocks can reveal important facets of crystallization and phosphorus geochemistry in subaluminous to peraluminous granitic systems.  相似文献   

12.
The system albite-celsian-water was investigated at isothermal sections of 670, 760, 800, 900, 1000 and 1100° C at 1 Kbar. At temperatures above about 950° C the existence of a solid solution series could be shown. In the condensed part of the 930° C/1 Kbar section the partition of barium between melt and coexisting crystals was measured using an electron probe microanalyzer. The barium content of crystals grown in equilibrium with a melt is always higher than the barium content of the starting composition, so albite-celsian shows an ascending type solid solution series at low total water pressures. In the subsolidus region two types of solvi are existent, which show different ways of phase unmixing. The relatively low barium contents of natural albites are interpreted as being due to geochemical reasons rather than crystalchemical reasons.

Meinem hochverehrten Lehrer, Herrn Prof. Dr. K. Jasmund, danke ich für sein lebhaftes Interesse während der Durchführung dieser Arbeit und für die kritische Durchsicht des Manuskripts. Mein Dank gilt ferner Herrn Dr. H. A. Seck für die Einarbeitung in die experimentellen Methoden der Hydrothermalsynthese und für kritische Anmerkungen zum Manuskript. Fräulein Dr. M. Corlett danke ich für wertvolle Informationen zur Messung mit der Elektronenstrahl-Mikrosonde.

Die Untersuchung wurde mit Hilfe von Personal- und Sachmitteln durchgeführt, die Herrn Professor Dr. K. Jasmund von der Deutschen Forschungsgemeinschaft zur Verfügung gestellt worden waren.  相似文献   

13.
The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.  相似文献   

14.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

15.
According to the compositions of the underground gasfield brines in the west of Sichuan Basin,the phase equilibria in the ternary systems KBr-K2B4O7-H2O and KCl-K2B4O7-H2O at 373 K were studied using the isothermal dissolution equilibrium method.The solubilities of salts and the densities of saturated solutions in these ternary systems were determined.Using the experimental data,phase diagrams and density-composition diagrams were constructed.The two phase diagrams were simple co-saturation type,each having an invariant point,two univariant curves and two crystallization regions.The equilibrium solid phases in the ternary system KBr-K2B4O7-H2O are potassium bromide (KBr) and potassium tetraborate tetrahydrate (K2B4O7·4H2O),and those in the ternary system KCl-K2B4O7-H2O are potassium chloride (KCl) and potassium tetraborate tetrahydrate (K2B4O7·4H2O).Comparisons of the phase diagrams of the two systems at different temperatures show that there is no change in the crystallization phases,but there are changes in the size of the crystallization regions.As temperature increases,the solubility of K2B4O7·4H2O increases rapidly,so the crystallization field of K2B4O7·4H2O becomes smaller.  相似文献   

16.
Dumortierite, generally simplified as Al7BSi3O18, was synthesized in the pure system Al2O3–B2O3–SiO2–H2O (ABSH) using gels with variable Al/Si ratios mixed with H3BO3 and H2O in known proportions as starting materials. Synthesis conditions ranged from 3 to 5 and 15 to 20 kbar fluid pressure at 650° to 880°C. On the basis of analyses, synthetic dumortierite shows relatively narrow homogeneity ranges with regard to Al/Si which, however, vary as a function of pressure: at low pressures (3–5 kbar) Al/Si is 2.77–2.94 versus 2.33–2.55 at high pressures (15–20 kbar). Outside of these homogeneity limits, dumortierite was found to coexist with quartz or corundum, depending on the starting composition. Whereas synthetic dumortierite invaribly contains 1.0 boron atom per formula unit (p.f.u.) based on 18 oxygens, the water contents vary drastically as a function of pressure and temperature (1.32–2.30 wt.% H2O or 0.85–1.47 H p.f.u.). H2O is an essential component in dumortierite. Structural formulae based on complete chemical analyses of the dumortierites synthesized reveal that there is invariably an Si-deficiency against the ideal number of 3.0 p.f.u. In the calculation procedure used here, this deficiency is balanced by assuming tetrahedral Al. The remaining Al, taken to occupy the octahedral sites, is always below the ideal number of 7.0 p.f.u. Charge-balancing the structure with the hydrogen found analytically leads to two different mechanisms of H incorporation: (1) 3H+ + octahedral vacancy for Al[6]; (2) H+ + tetrahedral Al for Si[4]. Dumortierite synthesized at high fluid pressure contains little Al[4] and, thus, little H+ of type 2; its hydrogen is predominantly present as type 1. Conversely, dumortierite formed at low fluid pressures is high in Al[4] and hydrogen type 2. The amounts of hydrogen type 1 in low-pressure dumortierites decrease with rising temperatures of synthesis. Typical structural formulae are: (Al6.670.33)[Al0.49Si2.51–O13.53(OH)1.47](BO3) for a low-pressure product, and (Al6.680.32)[Al0.09Si2.91O13.94(OH)1.06](BO3) for a high-pressure product. Independently of the synthesis conditions, dumortierite was found always to be orthorhombic, with b0/a0 deviating slightly, but significantly from the valid for hexagonal lattice geometry. As a function of increasing Al/Si in the synthetic crystals, their a0, c0, and V0 rise, whereas b0 decreases. Thus b0/a0 decreases most sensitively with rising Al/Si and also with growing Al[4]. More experimentation is required before the compositional variations of dumortierite found here can be applied successfully to geothermobarometry of natural rocks.  相似文献   

17.
18.
The effect of composition and temperature on the relaxed adiabatic bulk modulus of melts in the P2O5-Al2O 3-Na2SiO3 system have been investigated in the temperature range of 1140 to 1450 °C using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz. The density of these melts was determined using Pt-double-bob Archimedean densitometry techiques. P2O5 is known to dramatically affect the structure and the chemical and physical properties of granitic and pegmatitic melts as a function of the peralkalinity of the melt. The physical results of the structural changes occurring in Na2O-Al2O3-SiO2 melt upon the addition of P2O5 are observed by variations in the properties such as density and compressibility. For the present peralkaline melts, the bulk modulus and density decrease with addition of 15 mol% P2O5, and increase with the addition of 15 mol% Al2O3. The addition of P2O5 to the present melts results in a larger increase in melt compressibility than that observed with increasing polymerization between Na2SiO3 and Na2Si2O5 melts. This would suggest that not only is the polymerization of the melt increasing with the addition of P2O5 (Mysen et al. 1981; Nelson and Tallant 1984; Gan and Hess 1992), but that the tetrahedrally co-ordinated phosphorus complexes are influencing the bond lengths and energies within the melt structure; resulting in the structure becoming more compressible than expected, although incompressible (Vaughan and Weidner 1987) tetrahedral P2O5 polyhedra (Mysen et al. 1981; Gan and Hess 1992; Toplis et al. 1994) are being added to the melt structure.  相似文献   

19.
20.
Various members of the KAlSi3O8-BaAl2Si2O8 feldspar series are hydrothermally synthesized. Cellparameters of these are calculated from diffractometer patterns and found to be similar to those of Gay and Roy. A variation diagram is constructed correlating Cn-content and values of ΔFeKα(2θ(111)CaF2—2θ(004)Fsss), which gives $${\text{Mol}}\% {\text{ Cn = 229}}{\text{.83}}\Delta {\text{2}}\theta ---{\text{190}}{\text{.81}}$$ by a least square regression fitting. Phase equilibria relation in the solidus-liquidus-region for the KAlSi3O8-BaAl2Si2O8-H2O system at 1000 kg/cm2 are investigated. It is found to be a case of simple solid solution in a binary system, with reservations at the potassium-rich side of the system. Goranson (1938) gives a temperature of about 1000°C at 1000 kg/cm2 \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) for the incongruent melting of sanidine, but the authors prefer a value around 930°C at the same \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) . Reaction products of starting materials on the join KAlSi2O6-BaAl2Si2O8 and KAlSiO4-BaAl2Si2O8 gave no experimental hint for replacement of K+ by Ba++.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号