首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The use of stable Pb isotopes for tracing Pb contamination within the environment has strongly increased our understanding of the fate of airborne Pb contaminants within the boreal forest. This paper presents new stable Pb isotope (206Pb/207Pb ratio) measurements of solid soil samples, stream water (from a mire outlet and a stream draining a forest dominated catchment) and components of Picea abies (roots, needles and stemwood), and synthesizes some of the authors’ recent findings regarding the biogeochemistry of Pb within the boreal forest. The data clearly indicate that the biogeochemical cycling of Pb in the present-day boreal forest ecosystem is dominated by pollution Pb from atmospheric deposition. The 206Pb/207Pb ratios of the mor layer (O-horizon), forest plants and stream water (mainly between 1.14 and 1.20) are similar to atmospheric Pb pollution (1.14–1.19), while the local geogenic Pb of the mineral soil (C-horizon) has high ratios (>1.30). Roots and basal stemwood of the analyzed forest trees have higher 206Pb/207Pb ratios (1.15–1.30) than needles and apical stemwood (1.14–1.18), which indicate that the latter components are more dominated by pollution derived Pb. The low 206Pb/207Pb ratios of the mor layer suggest that the upward transport of Pb as a result of plant uptake is small (<0.04 mg m−2 a−1) in comparison to atmospheric inputs (∼0.5 mg m−2 a−1) and annual losses with percolating soil-water (∼2 mg m−2 a−1); consequently, the Pb levels in the mor layer are now decreasing while the pool of Pb in the mineral soil is increasing. Streams draining mires appear more strongly affected by pollution Pb than streams from forested catchments, as indicated by Pb concentrations about three times higher and lower 206Pb/207Pb ratios (1.16 ± 0.01 in comparison to 1.18 ± 0.02). To what extent stream water Pb levels will respond to the build-up of Pb in deeper mineral soil layers remains uncertain.  相似文献   

2.
A geochemical study of interstitial water and solid phase sediment using bulk concentration and geochemical partitioning was undertaken in vertical sediment profiles to trace diagenetic processes of lead (Pb) in hypersaline salt marsh sediments. In addition, we measured the stable isotopic composition of Pb in order to distinguish its input sources. Concentrations of Pb increased from low or background values in the bottommost layer (< 60 cm depth), followed by fluctuations in the middle layer (20–60 cm) and peak values in the subsurface layer (3–5 cm). Pb associated to reactive fractions (e.g. OM, Fe–Mn oxyhydroxides and carbonates) accounted for 60% of that initially deposited. Stable Pb isotope data (206Pb/207Pb and 207Pb/208Pb) suggested that most of the Pb in the upper sediments (1.204 ± 0.002 and 2.469 ± 0.007) is still derived from the leaded gasoline combustion (1.201 ± 0.006 and 2.475 ± 0.005). Profile of dissolved Pb was related to those for ammonium, phosphates and dissolve Fe and Mn, which reveals the influence of the diagenetic reactions on the Pb behavior. OM, Fe–Mn oxyhydroxides and the sulfide minerals play a significant role for mobilizing and trapping the Pb. Metal mobilization was calculated considering an advective–diffusive system. The advective process constitutes the dominant mechanism of Pb mobilization. A low diffusive outflux with respect to the Pb mobilization rate suggested that most of the released Pb is retained in the sediments. Authigenic oxides precipitated at the oxic–suboxic layers (0–4 cm depth) and authigenic sulfide minerals formed Pb in the anoxic layers (7–20 cm depth) constituting the main scavengers for Pb that is diagenetically released. This retention has significant environmental implications because it reduces the availability and toxicity of Pb to biota, including humans.  相似文献   

3.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   

4.
The magnitude and sources of lead (Pb) pollution in the Gulf of California Ecoregion (GCE) in northwest Mexico were evaluated using various samples collected from urban and rural areas around two typical subtropical coastal ecosystems. Lead concentrations and isotopic compositions (206Pb/207Pb, 208Pb/207Pb, 206Pb/204Pb and 208Pb/204Pb) were measured using high resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS). Urban street dust (157 ± 10.1 μg g− 1) was heavily enriched with Pb, compared to the Pb enrichment of agricultural soils (29.0 ± 16.0 μg g− 1) and surface estuary sediments (35.6 ± 15.4 μg g− 1), all of which contained higher Pb concentrations than found in the natural bedrock (16.0 ± 5.0 μg g− 1). Pb concentrations in SPM (> 95% of total Pb) were significantly higher in sewage effluent (132 ± 49.9 μg g− 1) than in agricultural effluents (29.3 ± 5.9 μg g− 1), and river runoff (7.3 ± 4.2 μg g− 1). SPM in estuary water column averaged 68.3 ± 48.0 μg g−1. The isotopic composition of Pb (206Pb/207Pb, 208Pb/207Pb) in rural samples of aerosols (1.181 ± 0.001, 2.444 ± 0.003) and soil runoff (1.181 ± 0.003, 2.441 ± 0.004) was comparable to that of natural Pb-bearing bedrock (1.188 ± 0.005, 2.455 ± 0.008); while urban samples of aerosols, street dust, and sewage (1.190–1.207, 2.452–2.467) showed a significant contribution from automotive emissions from past leaded gasoline combustion (1.201 ± 0.006, 2.475 ± 0.005). The absence of lead from fertilizer (1.387 ± 0.008, 2.892 ± 0.005) suggests that this mixture is not representative of the GCE. A mixing model revealed that the Pb content in the environmental samples is predominantly derived from natural weathering and the past leaded gasoline combustion with the later influence of inputs from a more radiogenic source related with anthropogenic lead of North American origin (1.21 ± 0.02; 2.455 ± 0.02).  相似文献   

5.
Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been determined at monthly resolution in five Law Dome (coastal Eastern Antarctica) ice core sections dated from ∼1757 AD to ∼1898 AD. ‘Natural’ background Pb concentrations in ∼1757 AD average ∼0.2 pg g−1 and can be attributed to mineral dust and volcanic emissions, with 206Pb/207Pb ratios reaching up to 1.266 ± 0.002. From ∼1887 AD to ∼1898 AD, Pb concentrations reached ∼5 pg g−1 and 206Pb/207Pb ratios decreased to 1.058 ± 0.001 as a result of additional inputs of Pb from anthropogenic sources. Seasonal variability in the late 1880s has been investigated by decoupling volcanic Pb from the total measured Pb concentrations, revealing spring and autumn maxima, and consistent winter minima, in anthropogenic Pb and mineral dust (Ba) concentrations. We link this variability to the annual cycle in the position and strength of the Antarctic Circumpolar Trough and, the Southern Ocean westerly winds to the north of the trough region. During the autumn and spring seasons, these systems increase in strength, transporting more impurity laden air from the Southern Hemisphere continental regions to Eastern Antarctica and Law Dome. As this Pb is isotopically identical to that emitted from south-eastern Australia (Broken Hill, Port Pirie) this implies a relatively direct air trajectory pathway from southern Australia to Law Dome (Eastern Antarctica).  相似文献   

6.
As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by ‘pumping’ lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope (206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine (Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ∼100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ∼1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/207Pb ratio of ∼1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m−2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (∼50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ∼0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m−2 yr−1 (mean ± SD), is taken up from the mor layer, the mineral soil and the atmosphere, respectively, by plants in the undisturbed mature forest. These small fluxes, which are at least a magnitude lower than reported downward migration losses, suggest that plant uptake will not strongly prolong the self-cleaning rate of the mor layer.  相似文献   

7.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

8.
Extreme U and Pb isotope variations produced by disequilibrium in decay chains of 238U and 232Th are found in calcite, opal/chalcedony, and Mn-oxides occurring as secondary mineral coatings in the unsaturated zone at Yucca Mountain, Nevada. These very slowly growing minerals (mm my−1) contain excess 206Pb and 208Pb formed from excesses of intermediate daughter isotopes and cannot be used as reliable 206Pb/238U geochronometers. The presence of excess intermediate daughter isotopes does not appreciably affect 207Pb/235U ages of U-enriched opal/chalcedony, which are interpreted as mineral formation ages.Opal and calcite from outer (younger) portions of coatings have 230Th/U ages from 94.6 ± 3.7 to 361.3 ± 9.8 ka and initial 234U/238U activity ratios (AR) from 4.351 ± 0.070 to 7.02 ± 0.12, which indicate 234U enrichment from percolating water. Present-day 234U/238U AR is ∼1 in opal/chalcedony from older portions of the coatings. The 207Pb/235U ages of opal/chalcedony samples range from 0.1329 ± 0.0080 to 9.10 ± 0.21 Ma, increase with microstratigraphic depth, and define slow long-term average growth rates of about 1.2-2.0 mm my−1, in good agreement with previous results. Measured 234U/238U AR in Mn-oxides, which pre-date the oldest calcite and opal/chalcedony, range from 0.939 ± 0.006 to 2.091 ± 0.006 and are >1 in most samples. The range of 87Sr/86Sr ratios (0.71156-0.71280) in Mn-oxides overlaps that in the late calcite. These data indicate that Mn-oxides exchange U and Sr with percolating water and cannot be used as a reliable dating tool.In the U-poor calcite samples, measured 206Pb/207Pb ratios have a wide range, do not correlate with Ba concentration as would be expected if excess Ra was present, and reach a value of about 1400, the highest ever reported for natural Pb. Calcite intergrown with opal contains excesses of both 206Pb and 207Pb derived from Rn diffusion and from direct α-recoil from U-rich opal. Calcite from coatings devoid of opal/chalcedony contains 206Pb and 208Pb excesses, but no appreciable 207Pb excesses. Observed Pb isotope anomalies in calcite are explained by Rn-produced excess Pb. The Rn emanation may strongly affect 206Pb-238U ages of slow-growing U-poor calcite, but should be negligible for dating fast-growing U-enriched speleothem calcite.  相似文献   

9.
Rock, soil, and plant (terrestrial moss, European mountain ash leaves, mountain birch leaves, bark and wood, and spruce needles and wood) samples, collected at 3 km intervals along a 120 km long transect (40 sites) cutting the city of Oslo, Norway, were analysed for their Pb concentration and Pb-isotope ratios. A general decrease in 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios, with a characteristic low variability in all plant materials and the plant-derived O-horizon of soil profiles, compared to rocks and mineral soils, is observed along the transect. It is demonstrated that minerogenic and biogenic sample materials belong to two different spheres, the lithosphere and biosphere, and that geochemical processes determining their chemical and isotopic compositions differ widely. Background variation for both sample materials needs to be established and documented at the continental and global scale before the anthropogenic influence on the geochemistry of the earth’s surface can be reliably estimated.  相似文献   

10.
A survey was performed to trace the main source of anthropogenic Pb pollution in Mexico City through Pb isotopic signatures (208Pb/204Pb, 206Pb/204Pb, 206Pb/207Pb, and 208Pb/207Pb) from 103 urban topsoil (0–5 cm) samples. Those were collected in the metropolitan area of Mexico City and compared with isotopic compositions of leaded gasoline (LG), domestic Pb ores (DLO) and parent rock (PR). The isotope ratios (IRs) of Pb were determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) and total Pb concentration analyzed by wavelength dispersive X-ray fluorescence (WDXRF). The range of Pb concentrations levels in urban topsoil samples was 15–473 mg/kg. The IR values obtained for these samples were 37.965–39.718 (208Pb/204Pb), 18.375–19.204 (206Pb/204Pb), 1.177–1.218 (206Pb/207Pb) and 2.443–2.496 (208Pb/207Pb). Analyzed topsoil samples with low Pb content (<50 mg/kg) displayed high dispersion in 208Pb/204Pb values, which are determined by different natural sources. Samples with 51–200 mg/kg Pb content, shown low dispersion that revealed the mixing between the natural Pb and anthropogenic Pb. The assessment of the IR values shown that, as Pb concentration increases, a trend toward gasoline IR data has been observed. The results obtained by this research suggest that although the use of leaded petrol had been banned in Mexico since 1997, the Pb pollution in the urban topsoils due to the historical use of Pb in petrol is still significant.  相似文献   

11.
Lead concentrations and isotopic composition of sediment samples collected from three sites within the Lebanese coastal zones were measured: at Akkar, Dora and Selaata. Akkar is located far from any direct source of contamination, while Dora and Selaata receive urban and industrial wastes, respectively. Low Pb concentrations (6–16 μg g−1) were detected in the Akkar sediments, and high concentrations of Pb (70–101 μg g−1) were detected in the Dora sediments. Measuring stable isotope ratios of Pb makes it possible to identify the principal sources of Pb in the Akkar sediments as Pb emitted from gasoline combustion and Pb originating from natural sources. On the other hand, Pb stable isotopic ratios in Dora sediments indicate that they are more highly influenced by anthropogenic sources. Isotopic Pb ratios in the Selaata deposits, where Pb concentrations range between 5 and 35 μg g−1, have an exceptional radiogenic signature for marine sediments 1.25 < 206Pb/207Pb < 1.6 and 0.5 < 206Pb/208Pb < 0.67, which shows the impact of the phosphogypsum discharged by Selaata’s chemical plant. Isotopic Pb analysis applied to EDTA extracts, to test the mobility of Pb, shows that that this mobility is high (>60%) after 24 h of extraction, and that the extracted Pb is less radiogenic than the residual Pb.  相似文献   

12.
Lead concentrations were determined in samples of soil B-horizon (N = 258), forest-floor humus (O-horizon, N = 259), grass (Avenella flexuosa, N = 251) and spruce (Picea abies, N = 253) needles (2nd year) collected at the same locations evenly spread over the territory of the Czech Republic at an average density of 1 site/300 km2. Median Pb concentrations differ widely in the four materials: soil B-horizon: 27 mg/kg (3.3-220 mg/kg), humus: 78 mg/kg (19-1863 mg/kg), grass: 0.37 mg/kg (0.08-8 mg/kg) and spruce needles: 0.23 mg/kg (0.07-3 mg/kg). In the Pb distribution maps for humus, grass and spruce a number of well-known Pb-contamination sources are indicated by unusually high concentrations (e.g., the Pb smelter at Pribram, the metallurgical industry in the NE of the Czech Republic and along the Polish border, as well as the metallurgical industry in Upper Silesia and Europe’s largest coal-fired power plant at Bogatynia, Poland). The ratio 206Pb/207Pb was determined in all four materials. The median value of the 206Pb/207Pb isotope ratio in the soil B-horizon is 1.184 (variation: 1.145-1.337). In both humus and grass the median value for the 206Pb/207Pb isotope ratio is 1.162 (variation: 1.130-1.182), in spruce needles the median ratio is 1.159 (variation: 1.116-1.186). In humus, grass and spruce needles the known contamination sources are all marked by higher 206Pb/207Pb isotope ratios in the maps. Furthermore, the soil B-horizon, humus, grass and spruce needles show distinctly different spatial distribution patterns of the 206Pb/207Pb isotope ratios. The B-horizon does not provide a viable background value for metal concentrations in the O-horizon or plant materials. None of the maps provides evidence for the importance of traffic-related emissions for the observed isotope ratios at the scale of the Czech Republic.  相似文献   

13.
Three soil profiles taken from the Hartwood Research Station in Central Scotland have been analyzed using chemical digestion and extraction techniques to investigate the chemical association of heavy metals deposited from the atmosphere. Total digestion, EDTA extraction and the BCR (Bureau Communitaire de Reference) sequential extraction procedure were used. In addition, lead isotope ratios in the whole soils and in the fractions from the sequential extraction procedure were measured using thermal ionisation mass spectrometry. All the digestion and extraction procedures gave clear indication of enhanced concentrations of heavy metals in surface soils, in particular for lead and zinc. Whereas total digestion gave a good indication of the heavy metal status of the soils, the extraction procedures were necessary to provide information on chemical association of the metals with soil components, information needed to understand the soil processes involved in mobilization of metals. Lead isotope analysis of the whole soils revealed a consistent picture of lower 206Pb/207Pb ratios in surface soils (1.140-1.147) than in soils at 20-30 cm depth (1.182-1.190). The steady progression from the lower to higher ratios down the profile was clear indication that anthropogenic lead had penetrated to some degree into the deeper soils. The combination of sequential extraction and lead isotope analysis proved to be a powerful approach to studying this effect in more detail and showed that the fractions extractable from 20 to 30 cm soils contained lead with much lower 206Pb/207Pb ratios (1.174-1.178) than the residual fraction (1.196-1.200). As the extractable fractions contained ≥85% of the lead in the soil, a substantial portion of lead at 20-30 cm depth was of anthropogenic origin. The 206Pb/207Pb ratios of 1.174-1.178 found in the extractable fractions suggested that the mobile component of the anthropogenic lead was that deposited before the introduction of leaded petrol.  相似文献   

14.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean.  相似文献   

15.
U–Pb zircon geochronology of two Permo-Triassic granites (samples OT-52 and OT-272 with ages of 229 ± 8 Ma and 256 ± 2 Ma, respectively) in the Unazuki area, Hida Metamorphic Belt, southwest Japan, revealed the presence of Eoarchean to Paleoproterozoic inheritance. Inheritance is consistent with both samples showing low zircon saturation temperatures for their bulk compositions. In OT-52, dark in CL, low Th/U zircon domains have a mean 207Pb/206Pb age of 1940 ± 17 Ma, which is consistent with an age of 1937 ± 6 Ma for anatexis in the Precambrian Busan gneiss complex in Korea. Eoarchaean inherited zircons with 207Pb/206Pb ages from ca. 3750 to 3550 Ma are common in OT-272 but are few in OT-52, suggesting a source from rocks with affinities to those in the Anshan area in the northeast China part of the North China Craton. On the other hand, a Hida Metamorphic Belt metasedimentary gneiss into which the granites were intruded contains ca. 1840, 1130, 580, 360, 285 and 250 Ma zircons (Sano et al., 2000). These ages suggest that the Unazuki Mesozoic granites did not originate from proximal Hida Metamorphic Complex rocks, but instead from unrelated rocks obscured at depth. The predominance of Eoarchean to Paleoproterozoic age components, and the marked lack of 900–700 Ma components suggest that the source was the (extended?) fringe of the North China Craton, rather than from Yangtze Craton crust. The Mesozoic evolution of Japan and its linkages to northeast Asia are discussed in the context of these results.  相似文献   

16.
Mineral soil horizons (Ae, Bhf1, Bhf2, Bf, BC and C) were carefully collected from two podzolic soil profiles in the Lake Clair watershed (Québec) in order to assess anthropogenic trace metal accumulation. Petrographic and selective analyses were performed to establish the soil mineralogy and properties. Furthermore, a complete sequential extraction procedure has been applied to help understanding the complex chemical speciation of Pb in forest soils. Chemical speciation of Pb showed a strong vertical gradient: 85% of this metal is mainly partitioned in refractory minerals in the C-horizon whereas in the upper Bhf1 and Ae-horizons, less than 50% of Pb is associated with this fraction. In the Ae-horizon, for example, 35%, 30% and 12% of total Pb, respectively, is associated with the exchangeable, labile organic matter and amorphous Fe-Mn oxides fractions. The distribution of Pb and Cr in the studied forest soils mainly reflects progressive contamination of the watershed by anthropogenic atmospheric sources. The anthropogenic source is indicated by elevated Cr and Pb concentrations in the topsoil (Bhf and Ae) horizons and by strong negative correlation between 206Pb/207Pb ratios and total Pb concentrations. According to these isotopic values, penetration of anthropogenic Pb does not exceed 10 cm in both soil profiles. Below this depth, both Pb concentrations and isotopic ratios remain nearly constant and similar to values observed in pre-anthropogenic sediments from Lake Clair. These values are interpreted as the natural geochemical backgrounds of the watershed. Based on that behaviour, calculated anthropogenic Pb net inputs amounted to between 1.24 and 1.8 g/m2.  相似文献   

17.
Angrite Sahara 99555 (hereafter SAH), precisely dated by Baker et al. (Baker J., Bizzarro M., Wittig N., Connelly J. and Haack H. (2005) Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature436, 1127-1131), has been proposed as a new reference point for the early Solar System timescale and for calculation of the revised minimum age of our Solar System. The Pb-Pb age of SAH of 4566.18 ± 0.14 Ma, reported by Baker et al., differs from the Pb-Pb age of D’Orbigny, another basaltic angrite, of 4564.42 ± 0.12 Ma (Amelin Y. (2008) U-Pb ages of angrites. Geochim. Cosmochim. Acta72, 221-232), despite the fact that the relative 53Mn-53Cr and 182Hf-182W ages of these meteorites are identical. Here I report U-Pb data for 21 whole rock and pyroxene fractions from SAH, analyzed using the same approach as D’Orbigny (Amelin, 2008). These fractions contain between 1.3 and 8.9 pg of total common Pb, slightly more than analytical blank. Measured 206Pb/204Pb ratios are between 625 and 2817 for D’Orbigny, blank-corrected 206Pb/204Pb ratios are between 1173 and 6675. Eight acid-washed whole rock fractions yielded an isochron age of 4564.86 ± 0.38 Ma, MSWD = 1.5. Data for pyroxene fractions plot mostly above the whole rock isochron, and do not form a linear array in 207Pb/206Pb vs. 204Pb/206Pb isochron coordinates. The 207Pb/206Pb model dates of the pyroxene fractions vary from 4563.8 ± 0.3 to 4567.1 ± 0.5 Ma. The difference between whole rock and pyroxene U-Pb systematics may be a result of re-distribution of radiogenic Pb at a mineral grain scale several million years after crystallization. Complexities of Sm-Nd, Lu-Hf, and possibly 26Al-26Mg mineral systematics of SAH, described previously, may be related to the same process that caused the re-distribution of radiogenic Pb. Disturbance of isotopic chronometers renders SAH an imperfect anchor for the early Solar System timescale. The problems with age determination revealed by the studies of SAH call for greater attention in Pb-isotopic dating of angrites and other achondrites.  相似文献   

18.
Knowledge of the cause and source of Pb pollution is important to abate environmental Pb pollution by taking source-related actions. Lead isotope analysis is a potentially powerful tool to identify anthropogenic Pb and its sources in the environment. Spatial information on the variation of anthropogenic Pb content and anthropogenic Pb sources in rural topsoils is remarkably limited. This study presents results of a survey of approximately 350 topsoil samples from rural locations covering the entire Netherlands, for which the bulk geochemical and Pb isotope compositions were determined. The specific aim of this study is to determine the anthropogenic Pb sources in the topsoils from rural areas in The Netherlands. The spatial distribution of anthropogenic Pb in soils in The Netherlands will be explained in terms of land use and pollution sources.Nearly all studied topsoils display Pb contents that exceed the amount expected based on the soil lithology. The range in Pb isotope ratios of the additional Pb fraction in rural Dutch topsoils is established at 1.056–1.199, 2.336–2.486 and 0.452–0.490 for 206Pb/207Pb, 207Pb/208Pb and 206Pb/208Pb, respectively. Five land use types are distinguished (forest, open nature, moor, arable land and grassland) with distinct isotopic compositions for added Pb. Additional Pb in soils of natural areas (forest, open nature and moor) has on average lower 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios than the agricultural soils (arable land and grassland). Additional Pb in both natural area soils and agricultural soils is interpreted to be of anthropogenic origin: most likely a mixture of coal/galena, incinerator ashes and gasoline Pb. The dominant sources of additional Pb in the topsoil of open nature areas are most likely incinerator ash and gasoline Pb. In contrast, the on average higher 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios of additional Pb in agricultural soils are most likely caused by the presence of animal manure and N–P fertilizers.Several areas are observed with notably high additional Pb contents (26–211 mg/kg on an organic matter-free basis) in the topsoil. The largest area is the Randstad area, which has the highest population and traffic density, and hosts a considerable fraction of the Dutch chemical industry. Two other areas with high additional Pb contents in the topsoil are located near the Dutch borders and are most likely influenced by German and Belgian chemical industries. The topsoils in the coastal dunes and southern, central and northern forests are characterized by relatively low additional Pb contents (<10 mg/kg on an organic matter-free basis). The population, traffic and chemical industry density is low in these areas and no fertilizers are applied.  相似文献   

19.
In situ U-Pb isotopic measurements were carried out by ion microprobe on the Zr-rich accessory minerals zirconolite [CaZrTi2O7], tranquillityite [Fe82+(ZrY)2Ti3Si3O24] and baddeleyite [ZrO2] in low-K, high-Ti mare basalt 10047 collected during the Apollo 11 mission. The analysed minerals are concentrated in pockets of late-stage mesostasis that comprises an intergrowth of silica, barian K-feldspar and Si-Al-K glass, from a phaneritic, subophitic, basalt comprising mainly pyroxene, plagioclase, ilmenite, cristobalite and troilite. Most Zr-rich minerals are unaltered, however, some tranquillityite is replaced by a complex intergrowth of zirconolite, baddeleyite, ilmenite and fayalite, suggesting that the mineral became unstable during crystallization. Several baddeleyite crystals have also undergone alteration to secondary zircon. Zirconolite was analysed in thin section 10047,11 and tranquillityite and baddeleyite in 10047,227, using a ∼6 μm primary ion beam. Both zirconolite and tranquillityite have significant U and low initial Pb contents, and are highly suitable for Pb/Pb dating. Fifteen analyses of zirconolite give a 207Pb/206Pb age of 3708 ± 7 Ma (207Pb/206Pb:204Pb/206Pb isochron; 95% confidence, including renormalisation of ratios) and twenty-five analyses of tranquillityite give 3710 ± 6 Ma. The 207Pb/206Pb dates are consistent with each other and refine results from an earlier study. Baddeleyite data were less precise, mainly due to lower secondary ionisation efficiency. Our results show that zirconolite and tranquillityite can provide precise isotopic dates and, given their presence in other samples, they represent important U-Pb chronometers for refining lunar geology.  相似文献   

20.
Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO3) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206Pb/207Pb, 206Pb/208Pb, and 208Pb/207Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg−1 versus TOP 6.9 mg kg−1). The 206Pb/207Pb ratios revealed a large spread along the transect with median 206Pb/207Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206Pb/207Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206Pb/207Pb and 206Pb/208Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号