首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system of connected lignite mining pits (part of the former Goitsche mining complex, Germany) was flooded with river water between 1999 and 2002. A considerable accumulation of acid associated with oxidized sulfides in sediments was seen as a critical point for the development of the lake water. To characterize the components contributing to the supply of dissolved lake water SO4 hydro-chemical and isotope investigations with respect to groundwater, pore water in the sulfide bearing sediments, river water and lake water were performed. δ34S of pore water SO4 that was dominated by oxidized pyrites ranges around −25‰ VCDT and differs strongly from river water SO4 with about +4.4‰. Thus, interactions between lake water and sediments were particularly pronounced during the first phase of flooding. For this period, a more quantitative estimation of the SO4 components in the lake water was difficult because of the heterogeneous SO4 distributions between the different sub-basins of the lake and according to the flooding process itself. Later, a component separation was attempted following mixing of the whole lake, which first occurred in spring 2002. A very heterogeneous groundwater environment with respect to highly variable SO4 concentrations and δ34S values and changing interaction with the forming lakes proved to be one of the most important limitations in the calculations of the mixing.  相似文献   

2.
《Chemical Geology》2007,236(3-4):181-198
Variations in molybdenum isotopic composition, spanning the range of ∼ 2.3‰ in the terms of 97Mo/95Mo ratio, have been measured in sediment cores from three lakes in northern Sweden and north-western Russia. These variations have been produced by both isotopically variable input of Mo into the lakes due to Mo isotopic heterogeneity of bedrock in the drainage basins and fractionation in the lake systems due to temporal variations in limnological conditions. Mo isotope abundances of bedrock in the lake drainage basins have been documented by analysis of Mo isotope ratios of a suite of molybdenite occurrences collected in the studied area and of detrital fractions of the lake sediment cores. The median δ97Mo value of the investigated molybdenites is 0.26‰ with standard deviation of 0.43‰ (n = 19), whereas the median δ97Mo value of detrital sediment fractions from two lakes is − 0.40‰ with standard deviation of 0.36‰ (n = 15).The isotopic composition of Mo in the sediment cores has been found to be dependent on redox conditions of the water columns and the dominant type of scavenging phases. Hydrous Fe oxides have been shown to be an efficient scavenger of Mo from porewater under oxic conditions. Oxidative precipitation of Fe(II) in the sediments resulted in co-precipitation of Mo and significant authigenic enrichment at the redox boundary. In spite of a pronounced increase in Mo concentration associated with Fe oxides at the redox boundary the isotopic composition of Mo in this zone varies insignificantly, suggesting little or no isotope fractionation during scavenging of Mo by hydrous Fe oxides. In a lake with anoxic bottom water a chironomid-inferred reconstruction of O2 conditions in the bottom water through the Holocene indicates that increased O2 concentrations are generally associated with low δ97Mo/95Mo values of the sediments, whereas lowered O2 contents of the bottom water are accompanied by relatively high δ97Mo/95Mo values, thus confirming the potential of Mo isotope data to be a proxy for redox conditions of overlying waters. However, it is pointed out that other processes including input of isotopically heterogeneous Mo and Mn cycling in the redox-stratified water column can be a primary cause of variations in Mo isotopic compositions of lake sediments.  相似文献   

3.
The Lake Chany complex and nearby lakes in western Siberia (Russian Federation) were studied to constrain the S cycle in these terrestrial lake environments. Surface water chemistry was characterized by Na–SO4–Cl composition, comparable to other inland basins in semi-arid climatic zones associated with marine evaporite-bearing formations at depth. Dissolved sulfates showed elevated δ34S (up to +32.3‰). These values are quite distinct from those in similar saline lakes in northern Kazakhstan, the Aral Sea, Lake Barhashi, and a gypsum deposit in the Altai Mountains. The localized distribution of such a unique S isotopic signature in dissolved SO4 negates both aeolian and catastrophic flooding hypotheses previously suggested for the genesis of the dissolved salts. The probable source of the dissolved SO4 in Lake Chany basin is inherited from hidden saline groundwaters (whose location and origins remain unclear) from eastern Paleozoic ranges with Upper Devonian formations with heavy S isotope values. Post-depositional enrichment of heavy S in the dissolved SO4 from saline sediments may be caused by local activity of SO4-reducing bacteria under the ambient supply of electron donors (dissolved river load organic matter and decaying bacterial mats) in the lake complex. Such microbial processes can remove up to ca. 60% of SO4 from the system. Extensive and intensive evaporation of lake fluids, ca. 40%, was indicated by the progressive enrichment of δ18O values in meteoric water samples collected along the river and lake system. This evaporation process compensates the microbial loss of SO4 dissolved in the incoming river water.  相似文献   

4.
《Applied Geochemistry》1997,12(3):305-319
An analysis of the S and O isotopic compositions and concentrations of dissolved S04 in river-and lake-water from 7 major catchments of the North and South Islands, New Zealand, allows the distinction between natural (geological, geothermal and volcanic) and anthropogenic S sources.The Buller and the Wairau, relatively pristine rivers in the South Island, show two end-member mixing between34S- and18O-rich rain-water S04 (relatively enriched isotope values) and relatively depleted S04 from oxidation of bedrock sulfide. Tertiary sediments contribute the isotopically most depleted S (down to δ34SCDT−15‰) to the river-water S04, whereas Mesozoic greywacke contributes S with slightly positive δ34S values. River-water S04δ18OSMOW values range from 0 to + 5‰ most probably depending on the micro-environment of the oxidising zone. South Island rivers with S04δ34S> + 5‰ have low S04 concentrations (< 3 mgl−1) and are dominantly composed of rain-water S04 which is principally sea-water derived. In the North Island, the Hutt River S04 samples also lie on an isotopic mixing trend from “greywacke bedrock” to rain-water S04, the latter with δ34S and δ18O values up to + 16 and + 6‰ respectively and a So4/SO4 + Cl fraction of 0.15 (sea-water is 0.12. Although dominated by greywacke, some samples in the Wairarapa area have relatively enriched δ18Sand δ34S values and elevated S04 concentrations (up to 16 mgl), together with higher SO4/SO4 + Cl fraction ratios. This suggests input of fertilizer S04 (δ34S+ 17.2‰andδ18O+ 12.7‰) in the rivers of this agricultural area. The fertilizer loading of the Ruamahanga river can be estimated by its graphical offset from a deduced baseline for bedrockrainfall derived S04 on a S versus O isotope plot. The fertilizer loading represents about 20% of the S04 in the river. Extrapolation of this figure to the annual river discharge indicates that approximately 18% of the amount applied within the catchment is lost to the river.The source of the Whangaehu river is the Ruapehu crater lake (active volcano) with high S04 concentrations and very enriched S04 isotopic signatures (δ34S> + 17‰andδ18O> + 12‰). Downstream this water is diluted by tributaries with lower S04 concentration and isotope signatures of Tertiary sediments similar to the rivers in the South Island. Both geothermal and rain-water S04 inputs to the streams flowing into Lakes Taupo and Rotorua were identified isotopically; in particular waters flowing out from Lake Rotorua have a higher geothermal derived S04 content than the inflows, indicating that there must be a considerable underwater geothermal input to the lake.  相似文献   

5.
《Applied Geochemistry》2005,20(4):673-681
Lead-210 chronologies, vertical S concentration gradients and δ34S values are presented for 5 Sphagnum-dominated peat bogs located in Central Europe (Rybarenska slat and Ocean Bog; Czech Republic) and the British Isles (Thorne Moors, England; Connemara, Ireland; and Mull, Scotland). Sulfur concentrations were measured in three 40-cm deep peat cores per site, sectioned into 2-cm segments. The coefficient of variation in S concentrations was low across all depths and sites (mean of 16%), indicating a high degree of within-site homogeneity in vertical S patterns. Similar S concentration trends and similar δ34S trends were found at all study sites. With an increasing peat depth, S concentrations first increased and then decreased. S concentrations peaked in layers which were deposited in ca. 1959, 1907, 1945, 1899 and 1799 at Rybarenska slat, Ocean, Thorne Moors, Connemara and Mull, respectively. Atmospheric S deposition peaked in 1972 in the UK and in 1987 in the Czech Republic. Due to downward S mobility in peat, S concentration maxima were found in layers 59 (±19) a older that the year of the actual peak in S input. With an increasing depth, the maturating peat substrate at all sites exhibited first a negative δ34S shift, resulting from dissimilatory bacterial SO4 reduction, and then a positive δ34S shift, which may be related to advancing S mineralization. Minimum δ34S values were detected in layers which were deposited in ca. 1988, 1982, 1945, 1940 and 1978. A comparison of historical δ34S signatures of atmospheric S in England, measured on archived grain from the Broadbalk experiment (1845–1994), with δ34S values of Thorne Moors peat (1830–1994) also indicated mobility of S in peat. Sulfur mobility in water-logged peat is of concern during the present period of easing industrial pollution because SO4 released from peatlands may increase the acidity of the output.  相似文献   

6.
The S and O isotopic composition of dissolved SO4, used as a tracer for SO4 sources, was applied to the water of the Llobregat River system (NE Spain). The survey was carried out at 30 sites where surface water was sampled on a monthly basis over a period of 2a. The concentration of dissolved SO4 varied from 20 to 1575 mg L−1. Sulphur isotopic compositions clustered in two populations: one – 93% of the samples – had positive values with a mode of +9‰; the other had negative values and a mode of −5‰. Data for δ18OSO4 showed a mean value of +11‰, with no bi-modal distribution, though lower values of δ18O corresponded to samples with negative δ34S. These values can not be explained solely by the contribution of bedrock SO4 sources: that is, sulphide oxidation and the weathering of outcrops of sulphates, though numerous chemical sediments exist in the basin. Even in a river with a high concentration of natural sources of dissolved SO4, such as the Llobregat River, the δ34S values suggest that dissolved SO4 is controlled by a complex mix of both natural and anthropogenic sources. The main anthropogenic sources in this basin are fertilizers, sewage, potash mine effluent and power plant emissions. Detailed river water sampling, together with the chemical and isotopic characterisation of the main anthropogenic inputs, allowed determination of the influence of redox processes, as well as identification of the contribution of natural and anthropogenic SO4 sources and detection of spatial variations and seasonal changes among these sources. For instance, in the Llobregat River the input of fertilisers is well marked seasonally. Minimum values of δ34S are reported during fertilization periods – from January to March – indicating a higher contribution of this source. The dual isotope approach, δ34S and δ18O, is useful to better constrain the sources of SO4. Moreover, in small-scale studies, where the inputs are well known and limited, the mixing models can be enhanced and the contribution of the different sources can be quantified to some extent.  相似文献   

7.
In freshwater settings, dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol) is produced primarily by dinoflagellates, which encompass various species including autotrophs, mixotrophs and heterotrophs. Due to its source specificity and occurrence in lake and marine sediments, its presence and hydrogen isotopic composition (δD) should be valuable proxies for paleohydrological reconstruction. However, because the purity required for hydrogen isotope measurements is difficult to achieve using standard wet chemical purification methods, their potential as a paleohydrological proxy is rarely exploited. In this study, we tested δD values of dinosterol in both particulate organic matter (POM) and sediments of stratified tropical freshwater lakes (from Cameroon) as a paleohydrological proxy, the lakes being characterized by variable degrees of eutrophication. In POM and sediment samples, the δD values of dinosterol correlated with lake water δD values, confirming a first order influence of source water δD values. However, we observed that sedimentary dinosterol was D enriched from ca. 19 to 54‰ compared with POM dinosterol. The enrichment correlated with lake water column conditions, mainly the redox potential at the oxic–anoxic interface (Eh OAI). The observations suggest that paleohydrologic reconstruction from δD values of dinosterol in the sediments of stratified tropical lakes ought to be sensitive to the depositional environment, in addition to lake water δD values, with more positive dinosterol δD values potentially reflecting increasing lake eutrophication. Furthermore, in lake sediments, the concentration of partially reduced vs. non-reduced C34 botryococcenes, stanols vs. stenols, and bacterial (diploptene, diplopterol and ββ-bishomohopanol) vs. planktonic/terrestrial lipids (cholesterol, campesterol and dinosterol) correlated with Eh OAI. We suggest using such molecular proxies for lake redox conditions in combination with dinosterol δD values to evaluate the effect of lake trophic status on sedimentary dinosterol δD values, as a basis for accurately reconstructing tropical lake water δD values.  相似文献   

8.
《Applied Geochemistry》2005,20(4):789-805
Mineralogical, hydrochemical and S isotope data were used to constrain hydrogeochemical processes that produce acid mine drainage from sulfidic waste at the historic Mount Morgan Au–Cu mine, and the factors controlling the concentration of SO4 and environmentally hazardous metals in the nearby Dee River in Queensland, Australia. Some highly contaminated acid waters, with metal contents up to hundreds of orders of magnitude greater than the Australia–New Zealand environmental standards, by-pass the water management system at the site and drain into the adjacent Dee River.Mine drainage precipitates at Mt. Morgan were classified into 4 major groups and were identified as hydrous sulfates and hydroxides of Fe and Al with various contents of other metals. These minerals contain adsorbed or mineralogically bound metals that are released into the water system after rainfall events. Sulfate in open pit water and collection sumps generally has a narrow range of S isotope compositions (δ34S = 1.8–3.7‰) that is comparable to the orebody sulfides and makes S isotopes useful for tracing SO4 back to its source. The higher δ34S values for No. 2 Mill Diesel sump may be attributed to a difference in the source. Dissolved SO4 in the river above the mine influence and 20 km downstream show distinctive heavier isotope compositions (δ34S = 5.4–6.8‰). The Dee River downstream of the mine is enriched in 34S (δ34S = 2.8–5.4‰) compared with mine drainage possibly as a result of bacterial SO4 reduction in the weir pools, and in the water bodies within the river channel. The SO4 and metals attenuate downstream by a combination of dilution with the receiving waters, SO4 reduction, and the precipitation of Fe and Al sulfates and hydroxides. It is suggested here that in subtropical Queensland, with distinct wet and dry seasons, temporary reducing environments in the river play an important role in S isotope systematics.  相似文献   

9.
The biomarker composition and stable isotope (C, O) ratio values of organic matter (OM) and carbonate from sediment cores from the oligotrophic Lake Brienz and the eutrophic Lake Lugano (both in Switzerland) are compared, in order to obtain information about OM sources and transformation processes. Eutrophic conditions at Lake Lugano are reflected in elevated total organic carbon (TOC) content and hydrogen index (HI) values, as well as higher lipid concentrations. Parallel down core trends in δ13C values of TOC and calcite in the Lake Lugano sediments reflect bioproductivity cycles. Variations in δ18O values of calcite are consistent with changes in mean summer temperature over the time interval covered by the core. In contrast, such a correlation does not exist for Lake Brienz and there the stable isotope composition of calcite reflects its allochthonous origin. In the sediments of both lakes, fatty acid (FA) distributions and the composition of n-alkanols and n-alkanes indicate highly variable proportions of autochthonous OM sources (algae, zooplankton, bacteria) and OM from land plants. Enhanced in situ microbial synthesis during sediment deposition in Lake Lugano is suggested by the higher TOC-normalised concentrations of branched chain FAs (C15–C17), hopanoic acids and triterpenoid alcohols (i.e. tetrahymanol, diplopterol). Variations in the concentrations of cholesterol are related to contributions from zooplankton and/or green algae, while sitosterol concentrations reflect the input of vascular plants. Periods of increased input of OM from diatoms are evidenced by high 24-methylcholesta-5,22-dien-3β-ol (either epibrassicasterol or brassicasterol) and/or highly branched isoprenoid (HBI) alkenes concentrations. High relative concentrations of diplopterol in Lake Lugano sediments are consistent with the predominance of cyanobacteria commonly observed in eutrophic lakes. The presence of archeol and hydroxyarcheol in very low concentrations in the Lugano sediments argues for the activity of methanogens and/or anaerobic methanotrophs.Differences in OM degradation processes are reflected in higher chlorin index values in the Brienz sediments but higher saturated vs. unsaturated n-FAs in the core from Lugano. Higher concentrations of branched chain FAs and 16:1ω7 n-FA, as well as enhanced 18:1ω7/18:1ω9 n-FA, are consistent with enhanced bacterial biomass in the Lugano water column or sediments. The preservation of phytol seems to be enhanced in sediments with a high relative contribution of land plant OM. Major factors affecting OM accumulation in the lakes are differences in OM sources (i.e. terrestrial OM vs. autochthonous production), extent of bacterial activity and most likely oxygen availability in the water column.  相似文献   

10.
《Applied Geochemistry》1998,13(2):269-280
A slow flow, plug-through reactor was developed for measuring equilibrium and kinetic parameters of biogeochemical reactions on intact sections of sediment cores. The experimental approach was designed to preserve the structural, geochemical and microbiological integrity of the sediment sections and, hence, retrieve reaction parameters that apply to in-situ conditions.Inert tracer breakthrough experiments were performed on a variety of unconsolidated surface sediments from lacustrine, estuarine and marine depositional environments. The sediments studied cover wide ranges of composition, porosity (46–83%) and mean grain size (10−4−10−2 cm). Longitudinal dispersion coefficients were determined from the breakthrough curves of Br. The curves were also used to check for early breakthrough or trailing, that is, features indicative of non-ideal flow conditions. Sediment plugs that exhibited these features were eliminated from further experiments.Dimensionless equilibrium adsorption coefficients (K) of NH4+, were calculated from measured retardation times between the breakthrough of NH4+ and Br. The values of K at 5°C vary between 0.3 and 2.3, with the highest value obtained in a fine-grained marine sediment, the lowest in a coarse-grained lake sediment. The values for the marine and estuarine sediments agree with values reported in the literature. The dependencies of K on ionic strength (range 0.2-0.7m) and temperature (range 5–25°C) in an estuarine sediment confirm that the main sorption mechanism for NH4+ is ion exchange.The reactor was used in recirculation mode to measure steady-state rates of dissimilatory SO42− reduction in a salt-marsh sediment. Recirculation homogenizes solute concentrations within the reactor, hence facilitating the derivation of reaction rate expressions that depend on solution composition. The rate of microbial S04 reduction was found to be nearly independent of the dissolved SO42− concentration in the range of 2.2−1 mM. Fitting of the experimental rates to a Monod relationship resulted in a maximum estimate of the half-saturation concentration, Ks, of 240 μM. This value is comparable to those reported for a pure culture of SO42−-reducing bacteria, but is significantly smaller than the only other Ks value reported in the literature for SO42− utilization in a natural marine sediment.  相似文献   

11.
Eutrophication of lakes and reservoirs has become a worldwide environmental problem, and nitrogen (N) has been recognized as one of the key factors responsible for eutrophication. Nitrogen adsorbed on sediments may be released via chemical and biological processes under changing environmental conditions. Spatial distributions of concentrations of ammonia nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N) and total nitrogen (TN) were investigated in sediments and overlying water of Dongting Lake, the second largest freshwater lake in China. The concentration of TN in the sediments exhibited strong spatial variation with relatively high values in the eastern part and relatively low values in the southern part of the lake. The TN concentration in the water of different regions of Dongting Lake was affected by the internal load of sediment N. The vertical distribution of TN in sediment cores showed a decreasing trend with an increase in depth. Concentrations of NH4 +–N in the sediment cores decreased with the depth increase until 6–8 cm and then increased slowly. However, concentrations of NO3 ?–N in the sediment cores showed an opposite trend from those of NH4 +–N. A kinetic release experiment of NH4 +–N showed that the maximum release rate occurred in the first 5 min and the amount of NH4 +–N release reached 77.93–86.34 % of the total amount in 0–10 min. The release of NH4 +–N in the surface sediments of Dongting Lake fits a first-order kinetics function.  相似文献   

12.
Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in the AOSR. At forested plots >90 km from the operations, SO4 deposition was ∼1.4 kg SO4-S ha−1 yr−1 for bulk deposition and ∼3.3 kg SO4-S ha−1 yr−1 for throughfall deposition. Throughfall SO4 deposition rates in the AOSR exceeded bulk deposition rates at all sites by a factor of 2–3, indicating significant inputs of dry deposition especially under forest canopies. Both bulk and throughfall SO4 deposition rates were elevated within 29 km distance of the industrial operations with deposition rates as high as 11.7 kg SO4-S ha−1 yr−1 for bulk deposition and 39.2 kg SO4-S ha−1 yr−1 for throughfall at industrial sites. Sulfur isotope ratio measurements of atmospheric SO4 deposited in the AOSR revealed that at a few selected locations 34S-depleted SO4, likely derived from H2S emissions from tailing ponds contributes to local atmospheric SO4 deposition. In general, however, δ34S values of SO4 deposition at distant forested plots (>74 km) with low deposition rates were not isotopically different from δ34S values at sites with high deposition rates in the AOSR and are, therefore, not suitable to determine industrial S contributions. However, O isotope ratios of atmospheric SO4 in bulk and throughfall deposition in the AOSR showed a distinct trend of decreasing δ18O-SO4 values with increasing SO4 deposition rates allowing quantification of industrial contributions to atmospheric SO4 deposition. Two-end-member mixing calculations revealed that open field bulk SO4 deposition especially at industrial sites in close proximity (<29 km) to the operations is significantly (17–59%) affected by industrial S emissions and that throughfall generally contained 49–100% SO4 of industrial origin. Hence, it is suggested that δ18O values of SO4 may constitute a suitable tracer for quantifying industrial contributions to atmospheric SO4 deposition in the AOSR.  相似文献   

13.
Age-dated sediment cores from 4 remote lakes across California were analyzed for total Hg (HgT) concentration as a function of pre- and post-industrialization. Particle size, magnetic susceptibility and organic C and N, were measured to determine if the Hg concentration in sediment cores could be related to atmospheric deposition and/or watershed processes. Results indicate that (a) for each lake modern (1970–2004) HgT lake sediment concentrations have increased by an average factor of 5 times more than historic (pre-1850) HgT concentrations; (b) the ratio of modern to pre-industrial lake sediment HgT for these lakes are higher than estimated for other locations where atmospheric deposition is presumed to be the main source of Hg; (c) 2 of the 4 studied lakes demonstrated significant relationships between HgT concentrations and percentage organic material (r2 = 0.68 and p < 0.01; r2 = 0.67 and p < 0.01) whereas the other two indicated no significant relationship (r2 = 0.05 and p = 0.51; r2 = 0.12 and p = 0.36).  相似文献   

14.
The carbon stable isotopic value of dissolved inorganic carbon (δ13CDIC) was measured over several years at different depths in the water column in six carbonate-precipitating temperate lakes. δ13CDIC behavior in three of these lakes departed from the conventional model wherein epilimnetic waters are seasonally enriched relative to all hypolimnetic waters, and in general δ13CDIC values in the water column were not readily correlated to parameters such as lake stratification, algal productivity, hydraulic residence time, or water chemistry. Additionally, the processes implicated in generating the δ13CDIC values of individual lakes differ between lakes with similar δ13CDIC compositions. Each lake thus initially appears idiosyncratic, but when the effects of carbonate mineral equilibria, microbial activity, and lake residence time are viewed in terms of the magnitude of distinct DIC pools and fluxes in stratified lakes, generalizations can be made that allow lakes to be grouped by δ13CDIC behavior. We recognize three modes in the relationship between δ13CDIC values and DIC concentration ([DIC]) of individual lakes: (A) δ13CDIC values decreasing with increasing [DIC]; (B) δ13CDIC values increasing with increasing [DIC]; (C) δ13CDIC values decreasing with increasing [DIC] but increasing again at the highest [DIC]. This approach is useful both in understanding δ13CDIC dynamics in modern hardwater lakes and in reconstructing the environmental changes recorded by sedimentary δ13C components in the lacustrine paleorecord.  相似文献   

15.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   

16.
《Applied Geochemistry》1995,10(2):161-173
The isotope compositions of sulfate in bulk precipitation near Munich (Germany) and of seepage water and soil sulfate in five acid forest soils representative of southern Germany were determined in order to ascertain the sources and dynamics of sulfur. While the δ34 S-values of inorganic sulfate in soil solution and solid phases were found to be nearly identical to those of precipitation sulfate, a depletion of several per mil was observed for the δ18 O-values of sulfate within the uppermost 30 cm of the investigated soils. Mineralization of carbon-bonded sulfur to SO42− in the forest floor and humic mineral soil horizons is the only known process which can explain the observed shifts in δ18Osulfate. The fact that this18O-depleted sulfate recharges the groundwater under forests must be considered, when sulfur and oxygen isotope data of sulfate are used for interpretations of the past geochemistry of groundwater systems.Since the δ34S-values of precipitation sulfate were barely altered during percolation through the soils, sulfate mobilities were inferred from a lysimeter experiment with undisturbed soil cores from the same sites, using the stable isotope composition of the irrigation sulfate as a tracer. Fifteen cores of each of the five forest soils, were repeatedly irrigated over 20 months with34S- and18O-enriched sulfate in three different treatments (35, 63, and 131 kg S ha−1 respectively). Despite the fact that the mean residence time of the seepage water was of the order of only a few months, the throughput of irrigation sulfate did not exceed 34% for all soils and irrigation treatments during the experiment. The low recovery of irrigation sulfate in the seepage water implies mean residence times for sulfur in the uppermost 60 cm of the forest soils of the order of decades, much longer than previously suggested.  相似文献   

17.
《Quaternary Science Reviews》2007,26(1-2):130-141
Analyses of sediment cores from Marcella Lake, a small, hydrologically closed lake in the semi-arid southwest Yukon, provides effective moisture information for the last ∼4500 years at century-scale resolution. Water chemistry and oxygen isotope analyses from lakes and precipitation in the region indicate that Marcella Lake is currently enriched in 18O by summer evaporation. Past lake water values are inferred from oxygen isotope analyses of sedimentary endogenic carbonate in the form of algal Charophyte stem encrustations. A record of the δ18O composition of mean annual precipitation at Jellybean Lake, a nearby evaporation-insensitive system, provides data of simultaneous δ18O variations related to decade-to-century scale shifts in Aleutian Low intensity/position. The difference between the two isotope records, Δδ, represents 18O-enrichment in Marcella Lake water caused by summer effective moisture conditions. Results indicate increased effective moisture between ∼3000 and 1200 cal BP and two marked shifts toward increased aridity at ∼1200 and between 300 and 200 cal BP. These prominent late Holocene changes in effective moisture occurred simultaneously with changes in Aleutian Low circulation patterns over the Gulf of Alaska indicated by Jellybean Lake. The reconstructed climate patterns are consistent with the topographically controlled climatic heterogeneity observed in the coastal mountains and interior valleys of the region today.  相似文献   

18.
The δ34S values of dissolved sulfide and the sulfur isotope fractionations between dissolved sulfide and sulfate species in Floridan ground water generally correlate with dissolved sulfate concentrations which are related to flow patterns and residence time within the aquifer. The dissolved sulfide derives from the slow in situ biogenic reduction of sulfate dissolved from sedimentary gypsum in the aquifer. In areas where the water is oldest, the dissolved sulfide has apparently attained isotopic equilibrium with the dissolved sulfate (Δ34S = 65 per mil) at the temperature (28°C) of the system. This approach to equilibrium reflects an extremely slow reduction rate of the dissolved sulfate by bacteria; this slow rate probably results from very low concentrations of organic matter in the aquifer.In the reducing part of the Edwards aquifer, Texas, there is a general down-gradient increase in both dissolved sulfide and sulfate concentrations, but neither the δ34S values of sulfide nor the sulfide-sulfate isotope fractionation correlates with the ground-water flow pattern. The dissolved sulfide species appear to be derived primarily from biogenic reduction of sulfate ions whose source is gypsum dissolution although upgradient diffusion of H2S gas from deeper oil field brines may be important in places. The sulfur isotope fractionation for sulfide-sulfate (about 38 per mil) is similar to that observed for modern oceanic sediments and probably reflects moderate sulfate reduction in the reducing part of the aquifer owing to the higher temperature and significant amount of organic matter present; contributions of isotopically heavy H2S from oil field brines are also possible.  相似文献   

19.
In an effort to constrain the mechanism of dolomitization in Neogene dolomites in the Bahamas and improve understanding of the use of chemostratigraphic tracers in shallow‐water carbonate sediments the δ34S, Δ47, δ13C, δ18O, δ44/40Ca and δ26Mg values and Sr concentrations have been measured in dolomitized intervals from the Clino core, drilled on the margin of Great Bahama Bank and two other cores (Unda and San Salvador) in the Bahamas. The Unda and San Salvador cores have massively dolomitized intervals that have carbonate associated sulphate δ34S values similar to those found in contemporaneous seawater and δ44/40Ca, δ26Mg values, Sr contents and Δ47 temperatures (25 to 30°C) indicating relatively shallow dolomitization in a fluid‐buffered system. In contrast, dolomitized intervals in the Clino core have elevated values of carbonate associated sulphate δ34S values indicating dolomitization in a more sediment‐buffered diagenetic system where bacterial sulphate reduction enriches the residual in 34S, consistent with high sediment Sr concentrations and low δ44/40Ca and high δ26Mg values. Only dolomites associated with hardgrounds in the Clino core have carbonate associated δ34S values similar to seawater, indicating continuous flushing of the upper layers of the sediment by seawater during sedimentary hiatuses. This interpretation is supported by changes to more positive δ44/40Ca values at hardground surfaces. All dolomites, whether they formed in an open fluid‐buffered or closed sediment‐buffered diagenetic system have similar δ26Mg values suggesting that the HMC transformed to dolomite. The clumped isotope derived temperatures in the dolomitized intervals in Clino yield temperatures that are higher than normal, possibly indicating a kinetic isotope effect on dolomite Δ47 values associated with carbonate formation through bacterial sulphate reduction. The findings of this study highlight the utility of applying multiple geochemical proxies to disentangle the diagenetic history of shallow‐water carbonate sediments and caution against simple interpretations of stratigraphic variability in these geochemical proxies as indicating changes in the global geochemical cycling of these elements in seawater.  相似文献   

20.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号