首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Combining Lu–Hf garnet geochronology with in situ trace element analyses in garnet allowed us to gain new insight into the metamorphic evolution of UHP–UHT rocks in the Stary Gierałtów region, in the Polish Sudetes. Prograde garnet growth recorded by Rayleigh-type heavy REE (HREE) zoning in the felsic granulites indicates that the obtained 386.6 ± 4.9 Ma Lu–Hf age represents the time of garnet crystallization on a prograde UHP metamorphic path. The surrounding rocks were metamorphosed at the same time as indicated by 381.2 ± 6.7 Ma Sm–Nd garnet age obtained for the mid-crustal metapelites. The second metamorphic episode, which affected most of the lower crust in the Orlica–Śnieżnik Massif (OSM) occurred at ca. 340 Ma as determined by U–Pb zircon and Sm–Nd garnet dating of granulites in this and previous studies is interpreted as a high temperature event, which took place on a retrograde path.

Trace element distribution in garnets from the layered granulites showed significant differences in distribution of medium and HREE in garnets from mafic and felsic protoliths over the course of the metamorphic evolution. This had strong impact on the isotopic dating results and led to “decoupling” of the Sm–Nd and Lu–Hf clocks, which recorded timing of the two different metamorphic episodes separated by as much as 40 Ma. Moreover, the preservation of the HREE growth zonation profile in garnets from the felsic granulites whose minimum metamorphic temperature was established at 900 °C implies that the Lu–Hf system under relatively dry conditions does not undergo significant diffusional re-equilibration even at such extreme temperatures and therefore it sill provides the age of prograde garnet growth. Under hydrous conditions, at least some resetting will take place, as documented by the partially relaxed HREE zonation profile in the amphibolitised mafic granulite, which yielded a 10 Ma younger age. The HREE distribution study appeared to be a particularly valuable and essential tool, which allowed us to distinguish garnet growth from post-growth complexities and hence, provide improved age interpretation. Medium REE, on the other hand, did not show any obvious correlation with the isotopic signature of garnet.

Two distinct metamorphic episodes recorded in the Stary Gierałtów region show that buoyancy-driven uplift of UHP rocks can be arrested at the base of a continental crust if not supported by any additional force. In our case study, the UHP rocks would have never reached the surface if their uplift had not been resumed after a long pause under a different tectonic regime. The multistage, discontinuous uplift revealed by the UHP rocks of the OSM provides a new scenario for the exhumation of continental crust from mantle depths distinct from the fast-track exhumation histories recognized in UHP terranes elsewhere.  相似文献   


2.
Nd–Hf isotopic decoupling has frequently been observed in the continental and oceanic mantle, but its origin remains controversial. Here we present combined elemental and Sr–Nd–Hf isotopic study on peridotite xenoliths entrained in Cenozoic basalts from Shuangliao and Jiaohe in Northeast China, which provides insight into this issue. The data reveal a heterogeneous lithospheric mantle beneath Northeastern China, consisting of fertile (type I) to strongly refractory (type II) peridotites. Type I peridotites are largely shielded from late metasomatism, thus preserving information of depletion events. Nd model age suggests a Proterozoic lithospheric mantle beneath NE China. Type II peridotites are mostly refractory harzburgites and show ubiquitous enrichment of incompatible elements. They are further divided into two sub-groups. Clinopyroxenes from type IIa samples have high and wide Lu/Hf (0.34–1.3) and very radiogenic Hf isotopic ratios (εHf = 44.4–63.8). Hf concentration is generally low (0.12–0.43 ppm) and plots along or slightly above the modeled partial melting depletion trend. In contrast, Nd content in type IIa clinopyroxenes is significantly higher than the modeled concentrations in residues at a given degree of melt depletion. The difference in enrichment of Hf and Nd translates to decoupling of Lu/Hf–Sm/Nd ratios and of Nd–Hf isotopes (εNd = −1.3 to 8.4). Clinopyroxenes from most of type IIb peridotites have relatively low Lu/Hf ratios (0.04–0.24) and coupled Nd–Hf isotopes. Both Hf and Nd plot significantly above the depletion trend; their concentrations are governed by the equilibrium partitioning between percolating melt and peridotites. The distinct geochemical characteristics of type IIa and type IIb clinopyroxenes may have resulted from chromatographic percolation of small volumes of silicate melts, in which percolation fronts of incompatible elements are dependent on their relative incompatibilities.  相似文献   

3.
Lithospheric thinning beneath the North China Craton is widely recognized, but whether the Yangtze block has undergone the same process is a controversial issue. Based on a detailed petrographic study, a suite of xenoliths from the Lianshan Cenozoic basalts have been analyzed for the compositions of minerals and whole rocks, and their Sr–Nd isotopes to probe the nature and evolution of the subcontinental lithospheric mantle beneath the lower Yangtze block. The Lianshan xenoliths can be subdivided into two Types: the main Type 1 xenoliths (9–15% clinopyroxene and olivine-Mg# < 90) and minor Type 2 peridotites (1.8–6.2% clinopyroxene and olivine-Mg# > 90). Type 1 peridotites are characterized by low MgO, high levels of basaltic components (i.e., Al2O3, CaO and TiO2), LREE-depleted patterns in clinopyroxenes and whole rocks, and relatively high 143Nd/144Nd (0.513219–0.513331) and low 86Sr/87Sr (0.702279–0.702789). These features suggest that Type 1 peridotites represent fragments of the newly accreted fertile lithospheric mantle that have undergone ~ 1% of fractional partial melting and later weak silicate–melt metasomatism, similar to Phanerozoic lithospheric mantle beneath the eastern North China Craton. Type 2 peridotites may be shallow relics of the older lithospheric mantle depleted in basaltic components, with LREE-enriched and HREE-depleted patterns, relatively low 143Nd/144Nd (0.512499–0.512956) and high 86Sr/87Sr (0.703275–0.703997), which can be produced by 9–14% partial melting and subsequent carbonatite–melt metasomatism. Neither type shows a correlation between equilibration temperatures and Mg# in olivine, indicating that the lithospheric mantle is not compositionally stratified, but both types coexist at similar depths. This coexistence suggests that the residual refractory lithospheric mantle (i.e., Type 2 peridotites) may be irregularly eroded by upwelling asthenosphere materials along weak zones and eventually replaced to create a new and fertile lithosphere mantle (i.e., Type 1 xenoliths) as the asthenosphere cooled. Therefore, the subcontinental lithospheric mantle beneath the lower Yangtze block shared a common evolutional dynamic environment with that beneath the eastern North China Craton during late Mesozoic–Cenozoic time.  相似文献   

4.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

5.
In situ zircon U–Pb ages and Hf isotopic compositions and whole rock geochemical and Sr–Nd–Pb isotopic data are presented for the Zijinshan alkaline intrusive complex from the Shanxi Province, western North China Craton. Salic rocks dominate the complex with the monzonite occurring in the outermost and pseudoleucite phonolitic breccia in the center. The intrusion took place 127 Ma ago with the earliest emplacement of monzonite and the termination of cryptoexplosive pseudoleucite phonolitic breccia. All rocks from this complex show LREE enrichment and HFSE depletion and exhibit enriched to depleted Sr–Nd isotopic features. The presence of inherited zircons and enriched Hf isotopic compositions in zircon rims, along with the enriched whole rock Sr–Nd isotopic compositions, indicate that the monzonite was formed through the mixing of lithospheric mantle-derived magma with lower crust-derived melts. The diopside syenite and nepheline-bearing diopside syenite are more depleted than the monzonite in terms of the Sr and Nd isotopes, together with their very high concentrations of LILE, we proposed that they originated from a mixed mantle source of enriched lithospheric mantle and depleted asthenosphere. The nepheline syenite has very low concentrations of MgO, Ni, Cr, suggesting that the magma underwent significant crystal fractionation. The most depleted Sr and Nd isotopic compositions ((87Sr/86Sr)i = 0.7036–0.7042, εNd(t) = − 0.2–0.3) among all rock types indicate a great contribution of asthenosphere to the nepheline syenite. The Zijinshan complex and its related crust-mantle interaction occurred in an extensional environment which resulted in continuously asthenospheric upwelling. Such an extensional environment might have been developed during the post-orogenic stage of the Late Paleozoic amalgamation of North China Craton with Mongolian continents and subsequent Mongol–Okhotsk ocean closure.  相似文献   

6.
During the late Mesozoic, an unusually broad range of alkalic magma compositions was erupted along the southern border of the São Francisco craton of Brazil. This magmatic activity includes carbonatite, kimberlite, lamprophyre, lamproite, syenite and the largest known example of extrusive kamafugite, the Mata da Corda formation. To determine the nature of the sources of this magmatism, and their geochemical history, an Os isotope study along with major and trace element and Sr, Nd and Pb isotope analyses of kimberlitic, lamproitic and kamafugitic rocks from the Alto Paranaíba province of Brazil was undertaken. This complements recent geochemical and isotopic studies of these magmas. The Os isotope data for Alto Paranaíba samples point to a peridotitic lithospheric mantle source for the kimberlites and lamproites that was variably depleted in Re, presumably by melt removal at some time between the late Archean and mid-Proterozoic. These lithospheric peridotites experienced LIL-element enrichment by fluid/melt metasomatism at roughly 1 Ga, most likely during mobile belt formation along the western border of the São Francisco craton. Kamafugitic samples have very radiogenic Os, suggestive of mafic (e.g. pyroxenite, websterite, eclogite) source materials that again appear to have been stabilized in the lithospheric mantle of Brazil in the mid to late Proterozoic. The Os isotope evidence for lithospheric sources for the Alto Paranaíba activity, coupled with Sr, Nd and Pb isotopic characteristics that overlap those of the Walvis Ridge hot-spot trace indicate that the EM1 component in South Atlantic ocean island basalts most likely represents the influence of delaminated Brazilian lithospheric mantle mixed into mantle circulation beneath the South Atlantic and is not related to the plume(s) commonly associated with this ocean island magmatism.  相似文献   

7.
The collision between the North and South China cratons in Middle Triassic time (240–225 Ma) created the world’s largest belt of ultrahigh-pressure (UHP) metamorphism. U–Pb ages, Hf isotope systematics and trace element compositions of zircons from the Xugou, Yangkou and Hujialing peridotites in the Sulu UHP terrane mainly record a ~470 Ma tectonothermal event, coeval with the Early Paleozoic kimberlite eruptions within the North China craton. This event is interpreted as the result of metasomatism by fluids/melts derived from multiple sources including a subducting continental slab. The peridotites also contain zircons with ages of ~3.1 Ga, and Hf isotope data imply a component ≥3.2 Ga old. Most zircon Hf depleted mantle model ages are ~1.3 Ga, suggesting that the deep subcontinental lithospheric mantle beneath the southeastern margin of the North China craton experienced a intense mid-Mesoproterozoic metasomatism by asthenospheric components, similar to the case for the eastern part of this craton. Integrating data from peridotites along the southern margin of the craton, we argue that the deep lithosphere of the cratonic margin (≥3.2 Ga old), from which the Xugou, Yangkou and Hujialing peridotites were derived, experienced Proterozoic metasomatic modification, followed by a strong Early Paleozoic (~470 Ma) tectonothermal event and the Early Mesozoic (~230 Ma) collision and northward subduction of the Yangtze craton. The Phanerozoic decratonization of the eastern North China craton, especially along its southern margin, was not earlier than the Triassic continental collision. This work also demonstrates that although zircons are rare in peridotitic rocks, they can be used to unravel the history of specific lithospheric domains and thus contribute to our understanding of the evolution of continental cratons and their margins.  相似文献   

8.
陈瑶  王勤 《高校地质学报》2022,28(4):457-472
加拿大Slave克拉通Jericho金伯利岩筒携带的橄榄岩包体提供了研究大陆岩石圈地幔物质组成和热结构的窗口。文章总结了地幔岩矿物温压计的研究进展,测量了Jericho金伯利岩携带的9个新鲜橄榄岩包体的矿物主量元素和微量元素,并使用不同的矿物温压计估算了平衡温度和压力。结果表明Nickel 和 Green(1985)的石榴子石—斜方辉石压力计可以较好地估算含石榴子石橄榄岩形成时的压力,Taylor(1998)二辉石温度计和Nimis 和 Taylor(2000)单斜辉石温度计的计算结果一致。具有粗粒变晶结构的尖晶石—石榴子石橄榄岩和石榴子石橄榄岩样品的平衡温度为575~843℃,压力为2.4~3.6 GPa,表明Slave克拉通岩石圈地幔温度较低。而残斑结构尖晶石—石榴子石二辉橄榄岩的平衡温度1109℃,压力为5.0 GPa,来源深度为~156 km,可能被早期金伯利岩浆携带到岩石圈地幔中部冷却,然后再被侏罗纪喷发的Jericho金伯利岩筒带到地表。使用石榴子石—单斜辉石稀土元素温压计获得的平衡温度高于主量元素温度计的结果,表明Slave克拉通岩石圈地幔经历了逐渐冷却的过程。此外,Slave克拉通浅部的尖晶石橄榄岩保留了强烈亏损的早期岩石圈地幔特征,而下部的岩石圈地幔经历了金伯利岩熔体和硅酸盐熔体的交代作用。  相似文献   

9.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

10.
This study presents mineralogical and thermobarometric data for equilibrium peridotite assemblages from the V. Grib kimberlite pipe of the Arkhangelsk diamond province. We provided the first constraints on the composition, structure, thermal state, and lower boundary of the lithospheric mantle beneath the V. Grib kimberlite pipe. It was found that phlogopite-free and phlogopite-bearing peridotite xenoliths can be distinguished by their mineral chemistry. The occurrence of phlogopite in peridotites may represent evidence for modal metasomatism responsible for variation in the mineral composition of phlogopite-pyrope and pyrope peridotites. On the basis of P-T estimates, we conclude that modal metasomatism may have affected the entire thickness of the lithospheric mantle beneath the V. Grib kimberlite pipe. Comparison of our results with the available data from the literature shows strong vertical and lateral mantle heterogeneity beneath kimberlite pipes of the Lomonosov deposit and the V. Grib pipe.  相似文献   

11.

Here we present new data from a systematic Sr, Nd, O, C isotope and geochemical study of kimberlites of Devonian age Mirny field that are located in the southernmost part of the Siberian diamondiferous province. Major and trace element compositions of the Mirny field kimberlites show a significant compositional variability both between pipes and within one diatreme. They are enriched in incompatible trace elements with La/Yb ratios in the range of (65–300). Initial Nd isotope ratios calculated back to the time of the Mirny field kimberlite emplacement (t = 360 ma) are depleted relative to the chondritic uniform reservoir (CHUR) model being 4 up to 6 ɛNd(t) units, suggesting an asthenospheric source for incompatible elements in kimberlites. Initial Sr isotope ratios are significantly variable, being in the range 0.70387–0.70845, indicating a complex source history and a strong influence of post-magmatic alteration. Four samples have almost identical initial Nd and Sr isotope compositions that are similar to the prevalent mantle (PREMA) reservoir. We propose that the source of the proto-kimberlite melt of the Mirny field kimberlites is the same as that for the majority of ocean island basalts (OIB). The source of the Mirny field kimberlites must possess three main features: It should be enriched with incompatible elements, be depleted in the major elements (Si, Al, Fe and Ti) and heavy rare earth elements (REE) and it should retain the asthenospheric Nd isotope composition. A two-stage model of kimberlite melt formation can fulfil those requirements. The intrusion of small bodies of this proto-kimberlite melt into lithospheric mantle forms a veined heterogeneously enriched source through fractional crystallization and metasomatism of adjacent peridotites. Re-melting of this source shortly after it was metasomatically enriched produced the kimberlite melt. The chemistry, mineralogy and diamond grade of each particular kimberlite are strongly dependent on the character of the heterogeneous source part from which they melted and ascended.

  相似文献   

12.
Abundant garnet-bearing granulite lenses are widely distributed in the northern part of the Sulu region and adjacent areas. They are possibly re-metamorphosed high-pressure metamorphic rocks. On the basis of detailed petrographic study, samples WD01, WD04 and ML06 from Laixi and Wendeng were identified as high-pressure granulites, and WH1 from Weihai as an original coesite-bearing eclogite. Three high-pressure granulite samples give mineral-WR isochron ages of 1846±76, 1743±79 and 1752±30 Ma. TDM ages are 3.3, 3.0 and 2.8 Ga. The Sm–Nd mineral-WR isochron ages are interpreted to date as the metamorphic resetting within the medium-pressure granulite facies, representing an isotopic re-homogeneity during uplifting of the high-pressure granulites from deep continent crust. It is important that Sm–Nd chronological characteristics are the same as Archaean high-pressure granulites in the North China craton. However, sample WH1 from Weihai demonstrates abnormal Sm–Nd characteristics. Its whole rock Nd (0) value is +129. TDM age is 1.3 Ga, and constrains the minimum age of re-metamorphosed eclogite protolith formation to the mid-Proterozoic. This result is identical to those reported by Jahn (1994), showing complicated processes of metamorphism and metasomatism. The data in this paper provide further evidence to define the boundary between the North China craton and UHPM belt in eastern Shandong and to understand the geotectonic nature of the boundary.  相似文献   

13.
Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine(54%–58%) + orthopyroxene(40%–46%)+minor clinopyroxene(1%)+spinel. Samples with boninite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-Al end-members with Al_2O_3 content of 30 wt % –50 wt %, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO_2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements(REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of arc-and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have ~(187)Os/~(188)Os ratios ranging from 0.113–0.122, which is typical of cratonic lithospheric mantle. These ~(187)Os/~(188)Os ratios yield model melt extraction ages(TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Al_2O_3-~(187)Os/~(188)Os-proxy isochron ages of 2.4 Ga–2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean-Paleoproterozoic.  相似文献   

14.
凉城、四子王旗、三义堂和大同的地幔包体的岩石学和矿物的主、微量元素成分显示华北克拉通中、西部北缘总体为过渡型岩石圈地幔,为原始地幔经过不同程度的熔体抽取和后期交代富集作用的残留.凉城岩石圈地幔经历的熔体抽取程度最低,后期交代富集作用比较强烈,这与其橄榄岩中尖晶石的Cr#较低,并且共存的单斜辉石的Mg#较低一致.三义堂岩石圈地幔经历的熔体抽取程度最高,后期交代富集作用最强烈,不同样品甚至同一样品中不同单斜辉石颗粒的La/Yb和LREE配分模式变化范围非常大,且矿物边部比核部更富集微量元素.大同、四子王旗岩石圈地幔经历的熔体抽取程度介于凉城和三义堂之间,但后期的交代富集作用明显不如凉城和三义堂强烈.研究区的岩石圈地幔主要受硅酸盐熔体交代作用的影响,只有三义堂岩石圈地幔还可能也受到了碳酸盐交代作用的影响.  相似文献   

15.
The Nonsberg–Ultental Region of northern Italy contains a Palaeozoic mélange that was partially subducted during the Variscan orogeny. This mélange is constituted mainly by metapelites characterized by shale-type REE-patterns, displaying partial melting which began under high-pressure conditions. The resulting migmatites enclose minor slivers of mantle-wedge peridotites that have been incorporated into the mélange during subduction. Peridotites display important large ion lithophile elements (LILE) enrichment consequent to amphibole recrystallization contemporaneously with metapelite migmatization at P ≈ 2.7 GPa and T ≈ 850 °C in the garnet–peridotite field. Crustal and mantle (ultramafic) rocks of the mélange display the same Sm–Nd ages of about 330 ± 6 Ma, which dates both the metamorphic peak and the migmatization event. The zircon U–Pb age of the metasomatic amphibolitic contact between garnet peridotite and migmatite is identical (333.3 ± 2.4 Ma) within analytical errors. Therefore, metasomatism, migmatization and peak metamorphism are constrained to the same event. The presence of Cl-rich apatite and ferrokinoshitalite in the contact amphibolite, together with the trace-element patterns of peridotites, suggest that metasomatism was driven by Cl- and LILE-rich fluids derived from ocean water transported into the subduction zone by sediments and crustal rocks. These fluids interacted with the crust, prompting partial melting under water oversaturated conditions and partitioning LILE from the crust itself. Peridotites, which were well below their wet solidus temperature, could not melt but they recrystallized in the crustal mélange under garnet-facies conditions. Crustal fluids caused extensive hydration and LILE-enrichment in peridotites and severe Sm–Nd isotope disequilibrium between minerals, especially in the recrystallized peridotites. The proposed scenario suggests massive entrapment of crustal aqueous fluids at high-pressure conditions within subduction zones.  相似文献   

16.
Mid-Proterozoic calc-alkaline granitoids from southern Norway, and their extrusive equivalents have been dated by LAM-ICPMS U–Pb on zircons to ages ranging from 1.61 to 1.52 Ga; there are no systematic age differences across potential Precambrian terrane boundaries in the region. U–Pb and Lu–Hf data on detrital zircons from metasedimentary gneisses belonging to the arc association show that these were mainly derived from ca. 1.6 Ga arc-related rocks. They also contain a minor but significant fraction of material derived from (at least) two distinct older (1.7–1.8 Ga) sources; one has a clear continental signature, and the other represents juvenile, depleted mantle-derived material. The former component resided in granitoids of the Transscandinavian Igneous Belt, the other in mafic rocks related to these granites or to the earliest, subduction-related magmatism in the region. Together with published data from south Norway and southwest Sweden, these findings suggest that the western margin of the Baltic Shield was the site of continuous magmatic arc evolution from at least ca 1.66 to 1.50 Ga. Most of the calc-alkaline metaigneous rocks formed in this period show major- and trace-element characteristics of rocks formed in a normal continental margin magmatic arc. The exceptions are the Stora Le-Marstrand belt in Sweden and the Kongsberg complex of Norway, which have an arc-tholeiitic chemical affinity. The new data from south Norway do not justify a suggestion that the crust on the west side of the Oslo Rift had an early to mid-Proterozoic history different from the crust to the east. Instead, they indicate that the different parts of south Norway and southwest Sweden were situated at the margin of the Baltic Shield throughout the mid-Proterozoic. Changes from arc tholeitic to calc-alkaline magmatism reflect changes with time in the subduction zone system, or lateral differences in subduction zone geometry. The NW American Cordillera may be a useful present-day analogue for the tectonomagmatic evolution of the mid-Proterozoic Baltic margin.  相似文献   

17.
Tom Andersen  William L Griffin   《Lithos》2004,73(3-4):271-288
The Storgangen orebody is a concordantly layered, sill-like body of ilmenite-rich norite, intruding anorthosites of the Rogaland Intrusive Complex (RIC), SW Norway. 17 zircon grains were separated from ca. 5 kg of sand-size flotation waste collected from the on-site repository from ilmenite mining. These zircons were analysed for major and trace elements by electron microprobe, and for U–Pb and Lu–Hf isotopes by laser ablation microprobe plasma source mass spectrometry. Eight of the zircons define a well-constrained (MSWD=0.37) concordant population with an age of 949±7 Ma, which is significantly older than the 920–930 Ma ages previously reported for zircon inclusions in orthopyroxene megacrysts from the RIC. The remaining zircons, interpreted as inherited grains, show a range of 207Pb/206Pb ages up to 1407±14 Ma, with an upper intercept age at ca. 1520 Ma. The concordant zircons have similar trace element patterns, and a mean initial Hf isotope composition of 176Hf/177Hf949 Ma=0.28223±5 (Hf=+2±2). This is similar to the Hf-isotope composition of zircons in a range of post-tectonic Sveconorwegian granites from South Norway, and slightly more radiogenic than expected for mid-Proterozoic juvenile crust. The older, inherited zircons show Lu–Hf crustal residence ages in the range 1.85–2.04 Ga. One (undated) zircon plots well within the field of Hf isotope evolution of Paleoproterozoic rocks of the Baltic Shield. These findings indicate the presence of Paleoproterozoic components in the deep crust of the Rogaland area, but do not demonstrate that such rocks, or a Sveconorwegian mantle-derived component, contributed significantly to the petrogenesis of the RIC. If the parent magma was derived from a homogeneous, lower crustal mafic granulite source, the lower crustal protolith must be at least 1.5 Ga old, and it must have an elevated Rb/Sr ratio. This component would be indistinguishable in Sr, Nd and Hf isotopes from some intermediate mixtures between Sveconorwegian mantle and Paleoprotoerzoic felsic crust, but it cannot account for the initial 143Nd/144Nd of the most primitive, late Sveconorwegian granite in the region, without the addition of mantle-derived material.  相似文献   

18.
Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.  相似文献   

19.
New data on metasomatic processes in the lithospheric mantle in the central part of the Arkhangelsk diamondiferous province (ADP) are presented. We studied the major- and trace-element compositions of minerals of 26 garnet peridotite xenoliths from the V. Grib kimberlite pipe; 17 xenoliths contained phlogopite. Detailed mineralogical, petrographic, and geochemical studies of peridotite minerals (garnet, clinopyroxene, and phlogopite) have revealed two types of modal metasomatic enrichment of the lithospheric-mantle rocks: high temperature (melt) and low-temperature (phlogopite). Both types of modal metasomatism significantly changed the chemical composition of the peridotites. Low-temperature modal metasomatism manifests itself as coarse tabular and shapeless phlogopite grains. Two textural varieties of phlogopite show significant differences in chemical composition, primarily in the contents of TiO2, Cr2O3, FeO, Ba, Rb, and Cs. The rock-forming minerals of phlogopite-bearing peridotites differ in chemical composition from phlogopite-free peridotites, mainly in higher FeO content. Most garnets and clinopyroxenes in peridotites are the products of high-temperature mantle metasomatism, as indicated by the high contents of incompatible elements and REE pattern in these minerals. Fractional-crystallization modeling gives an insight into the nature of melts (metasomatic agents). They are close in composition to picrites of the Izhmozero field, basalts of the Tur’ino field, and carbonatites of the Mela field of the ADP. The REE patterns of the peridotite minerals make it possible to determine the sequence of metasomatic enrichment of the lithospheric mantle beneath the V. Grib kimberlite pipe.  相似文献   

20.
Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr–Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr–Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300–400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe 2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号