首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although atmospheric greenhouse gas concentrations continuously increased, there was relatively little change in global-averaged surface temperatures from 1998 to 2013, which is known as atmospheric warming slowdown. For further understanding the mechanism involved, we explored the energy redistribution between the atmosphere and ocean in different latitudes and depths by using data analysis as well as simulations of a coupled atmosphere–ocean box model. The results revealed that, compared with observational changes of ocean heat content (OHC) associated with rapid warming, the OHC changes related to warming slowdown are relatively larger in multiple ocean basins, particularly in the deeper layer of the Atlantic. The coupled box model also showed that there is a larger increasing trend of OHC under the warming slowdown scenario than the rapid warming scenario. Particularly, during the warming slowdown period, the heat storage in the deeper ocean increases faster than the ocean heat uptake in the surface ocean. The simulations indicated that the warming patterns under the two scenarios are accompanied by distinct outgoing longwave radiation and atmospheric meridional heat transport, as well as other related processes, thus leading to different characteristics of ocean heat uptake. Due to the global energy balance, we suggest this slowdown has a tight relationship with the accelerated heat transport into the global ocean.  相似文献   

2.
Climate change due to enhanced greenhouse warming has been calculated using the coupled GFDL general circulation model of the atmosphere and ocean. The results of the model for a sustained increase of atmospheric carbon dioxide of 1% per year over a century indicate a marked warming of the upper ocean. Results of the model are used to study the rise in sea level caused by increase in ocean temperatures and associated changes in ocean circulation. Neglecting possible contributions due to changes in the volume of polar ice sheets and mountain glaciers, the model predicts an average rise in sea level of approximately 15 ± 5 cm by the time atmospheric carbon dioxide doubles. Heating anomalies are greatest in subpolar latitudes. This effect leads to a weakening of the ocean thermohaline circulation. Changes in thermohaline circulation redistribute heat within the ocean from high latitudes toward the equator, and cause a more uniform sea level rise than would occur otherwise.  相似文献   

3.
Hsieh  William W.  Bryan  Kirk 《Climate Dynamics》1996,12(8):535-544
Future sea level rise from thermal expansion of the World Ocean due to global warming has been explored in several recent studies using coupled ocean-atmosphere models. These coupled models show that the heat input by the model atmosphere to the ocean in such an event could be quite non-uniform in different areas of the ocean. One of the most significant effects predicted by some of the models is a weakening of the thermohaline circulation, which normally transports heat poleward. Since the greatest heat input from enhanced greenhouse warming is in the higher latitudes, a weakening of the poleward heat transport effectively redistributes the heat anomaly and the associated sea level rise to lower latitudes. In this study, the mechanism of ocean circulation spindown and heat redistribution was studied in the context of a much simpler, linearized shallow water model. Although the model is much simpler than the three-dimensional ocean circulation models used in the coupled model experiments, and neglects several important physical effects, it has a nearly 10-fold increase in horizontal resolution and clearer dynamical interpretations. The results indicated that advanced signals of sea level rise propagated rapidly through the action of Kelvin and Rossby waves, but the full adjustment toward a more uniform sea level rise took place much more slowly. Long time scales were required to redistribute mass through narrow currents trapped along coasts and the equatorial wave guide. For realistic greenhouse warming, the model showed why the sea level rise due to ocean heating could be far from uniform over the globe and hence difficult to estimate from coastal tide gauge stations.  相似文献   

4.
Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean–atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10–20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean’s thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.  相似文献   

5.
全球增暖对ENSO影响的数值模拟研究   总被引:4,自引:0,他引:4       下载免费PDF全文
胡博  李维京  陈鲜艳 《大气科学》2007,31(2):214-221
利用日本东京大学气候系统研究所、日本环境研究所和日本地球环境研究中心联合开发的海气耦合模式MIROC3.2,研究了全球变暖对ENSO年际变率的影响。该模式较好地模拟了ENSO循环的不同阶段表层和次表层海水温度变化,海表温度最大振幅出现在120°W以东,与观测一致,表明模式可以较好反映热带地区大气、海洋的动力、热力特征。研究还比较了控制试验和CO2浓度年增长1%的瞬时试验,结果表明,在全球变暖的大环境下ENSO事件发生频率没有显著变化,但ENSO事件强度增大,年际变率变大;热带太平洋呈现整体增暖趋势,表层温度尤其是热带中太平洋地区温度升高显著。敏感性分析表明,年际ENSO变率的振幅增大的主要贡献来自于海洋。海水增温导致热带太平洋海温垂直梯度增大,在热带西太平洋海温垂直温度梯度变化最为明显;次表层海温对单位大气风应力变化的响应大于表层海温响应。当这种响应与热带太平洋赤道地区径向温度梯度变化的共同作用导致温室效应下ENSO振幅增大。  相似文献   

6.
An ocean general circulation model coupled to an energy-moisture balance atmosphere model is used to investigate the sensitivity of global warming experiments to the parametrisation of sub-grid scale ocean mixing. The climate sensitivity of the coupled model using three different parametrisations of sub-grid scale mixing is 3°C for a doubling of CO2 (6°C for a quadrupling of CO2). This suggests that the ocean has only a weak feedback on global mean surface air temperature although significant regional differences, notably at high latitudes, exist with different sub-grid scale parametrisations. In the experiment using the Gent and McWilliams parametrisation for mixing associated with mesoscale eddies, an enhancement of the surface response in the Southern Ocean is found. This enhancement is largely due to the existence of more realistic sea-ice in the climatological control integration and the subsequent enhanced ice-albedo feedback upon warming. In accordance with earlier analyses, the Gent and McWilliams scheme decreases the global efficiency of ocean heat uptake. During the transient phase of all experiments, the North Atlantic overturning initially weakened but ultimately recovered, surpassing its former strength. This suggests that in the region around the North Atlantic the ocean acts as a negative feedback on local warming during the transient phase but a positive feedback at equilibrium. During the transient phase of the experiments with a more sophisticated and realistic parametrisation of sub-grid scale mixing, warmed Atlantic water was found to penetrate at depth into the Arctic, consistent with recent observations in the region. Received: 14 October 1998 / Accepted: 27 April 1999  相似文献   

7.
When greenhouse gases are increased in coupled GCM experiments there is both a direct effect and an indirect effect due to changes in the surface conditions. In this study we carry out experiments with a perpetual winter atmosphere only model in order to investigate the influence of changes to the surface conditions (sea surface temperatures, sea-ice and snow amount) on the Northern Hemisphere winter mid-latitude mean sea level pressure response. The surface conditions for the perpetual winter model experiments are prescribed from time averages of the HadCM2 control and greenhouse gas experiments. Forcing the perpetual winter model with the HadCM2 greenhouse gas surface conditions produces a negative mean sea level pressure (MSLP) response across both Northern Hemisphere ocean basins, as was found in the coupled model HadCM2 experiment. Additional PW model experiments show that the sea surface temperature forcing from the HadCM2 greenhouse gas experiment dominates the snow and soil moisture content forcings. The sea-ice forcing from the HadCM2 greenhouse gas experiment reduces MSLP at high latitudes. In the north Pacific region MSLP decreases when the global mean warming is applied to the sea surface temperature forcing field at all open sea points. In the north Atlantic region the increased tropics to mid-latitude meridional sea surface temperature gradient is required for MSLP to decrease. These experiments show that the MSLP response in the Northern Hemisphere mid-latitude storm track regions is sensitive to the non-local sea surface temperature anomaly pattern.  相似文献   

8.
 In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level. Received: 3 May 1999 / Accepted: 11 December 1999  相似文献   

9.
The heat budget of the upper Arctic Ocean is examined in an ensemble of coupled climate models under idealised increasing CO2 scenarios. All of the experiments show a strong amplification of surface air temperatures but a smaller increase in sea surface temperature than the rest of the world as heat is lost to the atmosphere as the sea-ice cover is reduced. We carry out a heat budget analysis of the Arctic Ocean in an ensemble of model runs to understand the changes that occur as the Arctic becomes ice free in summer. We find that as sea-ice retreats heat is lost from the ocean surface to the atmosphere contributing to the amplification of Arctic surface temperatures. Furthermore, heat is mixed upwards into the mixed layer as a result of increased upper ocean mixing and there is increased advection of heat into the Arctic as the ice edge retreats. Heat lost from the upper Arctic Ocean to the atmosphere is therefore replenished by mixing of warmer water from below and by increased advection of warm water from lower latitudes. The ocean is therefore able to contribute more to Arctic amplification.  相似文献   

10.
Recent climatic trends in the tropical Atlantic   总被引:1,自引:1,他引:0  
A homogeneous monthly data set of sea surface temperature (SST) and pseudo wind stress based on in situ observations is used to investigate the climatic trends over the tropical Atlantic during the last five decades (1964–2012). After a decrease of SST by about 1 °C during 1964–1975, most apparent in the northern tropical region, the entire tropical basin warmed up. That warming was the most substantial (>1 °C) in the eastern tropical ocean and in the longitudinal band of the intertropical convergence zone. Surprisingly, the trade wind system also strengthened over the peirod 1964–2012. Complementary information extracted from other observational data sources confirms the simultaneity of SST warming and the strengthening of the surface winds. Examining data sets of surface heat flux during the last few decades for the same region, we find that the SST warming was not a consequence of atmospheric heat flux forcing. Conversely, we suggest that long-term SST warming drives changes in atmosphere parameters at the sea surface, most notably an increase in latent heat flux, and that an acceleration of the hydrological cycle induces a strengthening of the trade winds and an acceleration of the Hadley circulation. These trends are also accompanied by rising sea levels and upper ocean heat content over similar multi-decadal time scales in the tropical Atlantic. Though more work is needed to fully understand these long term trends, especially what happens from the mid-1970’s, it is likely that changes in ocean circulation involving some combination of the Atlantic meridional overtuning circulation and the subtropical cells are required to explain the observations.  相似文献   

11.
This paper examines several prominent thermodynamic and dynamic factors responsible for the meridional and vertical warming asymmetries using a moist coupled atmosphere–surface radiative transportive four-box climate model. A coupled atmosphere–surface feedback analysis is formulated to isolate the direct response to an anthropogenic greenhouse gas forcing from individual local feedbacks (water vapor, evaporation, surface sensible heat flux, and ice-albedo), and from the non-local dynamical feedback. Both the direct response and response to water vapor feedback are stronger in low latitudes. The joint effect of the ice-albedo and dynamical greenhouse-plus feedbacks acts to amplify the high latitude surface warming whereas both the evaporation and dynamical greenhouse-minus feedbacks cause a reduction of the surface warming in low latitudes. The enhancement (reduction) of local feedbacks in high (low) latitudes in response to the non-local dynamic feedback further strengthens the polar amplification of the surface warming. Both the direct response and response to water vapor feedback lead to an increase of lapse rate in both low and high latitudes. The stronger total dynamic heating in the mean state in high latitudes is responsible for a larger increase of lapse rate in high latitudes in the direct response and response to water vapor feedback. The local evaporation and surface sensible heat flux feedbacks reduce the lapse rate both in low and high latitudes through cooling the surface and warming the atmosphere. The much stronger evaporation feedback leads to a final warming in low latitudes that is stronger in the atmosphere than the surface.  相似文献   

12.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

13.
Summary In this paper a simple climate model is presented which is used to perform some sensitivity experiments. The atmospheric part is represented by a vertically and zonally averaged layer in which the surface air temperature, radiative fluxes at the surface and at the top of the atmosphere, the turbulent fluxes between atmosphere and surface and the snow cover are calculated. This atmospheric layer is coupled to a two-dimensional advection-diffusion ocean model in which the zonal overturning pattern is prescribed. The ocean model evaluates the temperature distribution, the amount of sea-ice and the meridional and vertical heat fluxes. The present-day climate simulated by the model compares reasonably well with observations of the seasonal and latitudinal distribution of temperature, radiation, surface alebdo, sea-ice and snow cover and meridional energy fluxes. Then, the sensitivity of the model-simulated present-day climate to perturbations in the incident solar radiation at the top of the atmosphere is investigated. The temperature response displays large latitudinal and seasonal variations, which is in qualitative agreement with results obtained with other climate models. It is found that the seasonal variation of sea-ice cover (and hence, the effective oceanic heat capacity) is one of the most important elements determining seasonal variations in climate sensitivity. Differences in sensitivity between the seasonal and annual mean version of the model are discussed. Finally, the equilibrium response to perturbations in some selected model variables is presented; these variables include meridional diffusion coefficients, drag coefficient, sea-ice thickness, atmospheric CO2-concentration and cloud optical thickness.With 13 Figures  相似文献   

14.
热带太平洋和印度洋热源对大气影响的季节变化特征   总被引:2,自引:0,他引:2  
本文利用1970—1979年COADS2°×2°格点月平均资料,计算了30°S—30°N热带太平洋和印度洋洋面上的有效长波辐射、感热和潜热通量以及它们的季节变化和年变化。结果指出:在冬季半球热带海洋外侧有大量的长波辐射、感热和潜热向大气输送,输送通量的季节变化大;热带太平洋地区西北部热通量的季节变化最大,赤道洋面地区热通量的年变化最小,潜热是洋面上热量输送的最大项,季节变化也最大;感热的输送量虽不及有效长波辐射,但其季节变化与有效长波辐射的变化相当;赤道地区是有效长波辐射和潜热通量的低值区,暖池地区是有效长波辐射的低值中心,靠近秘鲁海域的东南赤道太平洋是感热通量的负值区;热带太平洋西北部和阿拉伯海、孟加拉湾地区的热通量及年、季变化与亚洲季风有密切的关系,同时对我国和南亚地区的气候有重要的影响。   相似文献   

15.
Royer  J. F.  Planton  S.  Déqué  M. 《Climate Dynamics》1990,5(1):1-17
Sea ice has a major influence on climate in high latitudes. In this paper we analyzed the impact of removal of Arctic sea-ice cover on the climate simulated by a T42 20-level version of the French spectral model Emeraude. The control experiment was the second winter of an annual cycle simulation of the present climate. In the perturbed simulation the Arctic sea-ice cover was replaced by open ocean maintained at the freezing temperature of sea water. The zonal mean patterns of the model response were found to be in good agreement with earlier simulations of Fletcher et al. and Warshaw and Rapp. The atmospheric warming, caused by the increase of upward fluxes of sensible and latent heat and of longwave radiation from the ice-free ocean surface, is largely limited to the high latitudes poleward of 70° N and the lower half of the troposphere and leads to a surface pressure decrease and a precipitation increase over this area. We also analyze the geographical distribution of the response and the mechanisms that can explain the simulated cooling over Eurasia in relation to the energy budget at the surface. Finally, we discuss the reduction of cloud cover over the ice-free Arctic, which was an unexpected result of our simulation, and conclude that further studies are necessary to resolve the question of cumulus convection and cloud process parameterization in high latitudes.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

16.
 A 40 kyr integration with the coupled atmosphere/ocean/sea-ice model of intermediate complexity ECBilt for present boundary conditions has been performed. The climate of ECBilt displays quasi-periodical behaviour with a period of approximately 13 kyr. The quasi-periodical behaviour is characterized by large changes in the overturning cell in the Southern Ocean. The southern cell fluctuates between two quasi-stationary states, with accompaning changes in the atmospheric circulation in the Southern Hemisphere. The transition between these states is rapid and resembles the polar halocline catastrophes and flushes as observed in ocean general circulation models under mixed boundary conditions. The sea-ice influence on both the surface heat and fresh water flux appears to be crucial for the existence and the prolongation of the quasi-stationary states. The atmospheric circulation of those two quasi-stationary states displays large regional differences over Antarctica, resulting in even opposite surface air temperature trends for certain locations during the transition from one state to another. Received: 7 October 1999 / Accepted: 28 August 2000  相似文献   

17.
Global mean surface temperature (GMST) during 1910–2012 experienced four alternated rapid warming and warming hiatus phases. Such a temporal variation is primarily determined by global mean sea surface temperature (SST) component. The relative roles of ocean dynamic and thermodynamic processes in causing such global mean SST variations are investigated, using two methods. The first method is ocean mixed layer heat budget analysis. The budget diagnosis result shows that the thermodynamic processes dominate in the rapid warming phases, while the ocean dynamics dominate during the hiatus phases. The second method relies on the diagnosis of a simple equilibrium state model. This model captures well the horizontal distribution of SST difference between two warmer and cooler equilibrium states during either the rapid warming or hiatus phases. It is found that the SST difference during the rapid warming phases is primarily controlled by the increase of downward longwave radiation as both column integrated water vapor and CO2 increase during the phases. During the hiatus phases, the water vapor induced greenhouse effect offsets the CO2 effect, and the SST cooling tendency is primarily determined by the ocean dynamics over the Southern Ocean and tropical Pacific. The SST pattern associated with the Interdecadal Pacific Oscillation (IPO) might be responsible for the remote and local ocean dynamic responses through induced wind change.  相似文献   

18.
In response to increasing atmospheric concentrations of greenhouse gases, the rate of time-dependent climate change is determined jointly by the strength of climate feedbacks and the efficiency of processes which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere–ocean general circulation model (AOGCM) in experiments with CO2 held constant (control) and increasing at 1 per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind-driven circulation and diffuses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling–diffusion ocean models, the global average upward diffusive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less affected. Reduction of deep water production at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling influence. The important role of diffusion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes. Received: 8 July 1999 / Accepted: 17 November 1999  相似文献   

19.
Various ocean reanalysis data reveal that the subarctic Atlantic sea surface temperature (SST) has been cooling during the twentieth century. A similar cooling pattern is found in the doubling CO2 experiment obtained from the CMIP3 (coupled model intercomparison project third phase) compared to the pre-industrial experiment. Here, in order to investigate the main driver of this cooling, we perform the heat budget analysis on the subarctic Atlantic upper ocean temperature. The net surface heat flux associated with the increased concentration of greenhouse gases heats the subarctic ocean surface. In the most of models, the longwave radiation, latent heat flux, and sensible heat flux exert a warming effect, and the shortwave radiation exerts a cooling effect. On the other hand, the thermal advection by the meridional current reduces the subarctic upper ocean temperature in all models. This cold advection is attributed to the weakening of the meridional overturning circulation, which is related to the reduction in the ocean surface density. In particular, greater warming of the surface air than of the sea surface results in the reduction of surface evaporation and thereby enhanced freshening of the ocean surface water, while precipitation change was smaller than evaporation change. The thermal advections by both the wind-driven Ekman current and the density-driven geostrophic current contribute to cooling in most of the models, where the heat transport by the geostrophic current tends to be larger than that by the Ekman current.  相似文献   

20.
The Atlantic Meridional Overturning Circulation(AMOC)transports a large amount of heat to northern high latitudes,playing an important role in the global climate change.Investigation of the freshwater perturbation in North Atlantic(NA)has become one of the hot topics in the recent years.In this study,the mechanism and pathway of meridional ocean heat transport(OHT)under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model.The results show that the anomalous OHT in the freshwater experiment(FW)is dominated by the meridional circulation kinetic and ocean thermal processes.In the FW,OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents.Conversely,OHT recovers as the AMOC recovers,and the mechanism can be generalized as:1)increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA;2)the OHT from the Southern Ocean enters the NA through the equator alongthe deep Ekman layer;3)in NA,the recovery of OHT appears mainly along the isopycnic layers of 24.70-25.77 below the mixing layer.It is then transported into the mixing layer from the "outcropping points"innorthern high latitudes,and finally released to the atmosphere by the ocean-atmosphere heat exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号