首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
日本全球海-气耦合模式对中国夏季降水的预测试验   总被引:1,自引:0,他引:1  
为了提高中国夏季降水预测能力,首次采用日本地球环境前沿研究中心的全球海-气耦合环流模式(SINTEX—F),对1982—2004年中国160个测站的夏季降水进行了预测试验。通过与实况资料进行检验,对比分析表明,该模式对中国夏季降水具有较好的预测能力,尤其是对长江流域夏季异常降水预测较好,这对今后中国夏季降水预测具有一定的参考价值。  相似文献   

2.
欧亚环流异常对中国夏季降水的影响及其预测研究   总被引:6,自引:1,他引:6  
孙林海  何敏 《气象学报》2004,62(3):355-364
文中利用奇异值分解 (SVD)方法 ,分析了 5 0 0hPa环流与中国降水的耦合作用。结果表明 ,夏季高度场和降水场相互的空间分布与大气环流的遥相关型紧密联系 ,所对应的时间系数对夏季旱涝趋势有较好的表征能力。冬、春季高度场和夏季降水场的相互关系显示出与夏季相类似的遥相关分布型。利用高度场与降水场奇异值分解的结果及前期环流异常信息 ,可以为夏季降水趋势预测提供参考  相似文献   

3.
1978~2018年全国夏季降水实时业务预测技巧显示东北地区明显偏低,尤其是近几年在对全国夏季旱涝的总体分布预测效果明显提高的情况下,对东北地区的预测却与实况相反,因此有必要分析该区域预测技巧偏低的原因。利用站点资料、再分析格点数据、实时预测历史数据及统计诊断等方法,探讨了动力气候模式预测能力以及东北夏季降水预测的认识缺陷。通过系统地回顾东北夏季旱涝的气候特征、影响因子及预测方法等方面的研究进展,以及东北夏季降水实时预测检验,得出预测技巧偏低的可能原因:(1)东北初夏降水主要受东北冷涡活动的影响,盛夏主要受西太平洋副热带高压、东北南风和中高纬环流型的共同作用,而业务常用的国内外主要动力气候模式无法准确反映与东北初夏和盛夏降水相联系的关键环流系统;(2)东北夏季降水与全球海温的关系较弱且不稳定,尤其是与ENSO的关系较为复杂,年际关系随年代际变化而波动,即ENSO不是预测东北夏季降水的强信号;(3)东北夏季降水具有明显的季节内、年际和年代际等多时间尺度变率,夏季降水受到多种时间尺度信息的叠加和调控,不同尺度变率的贡献相当,且影响系统不同,导致预测难度较大。最后,进一步探讨了东北夏季降水预测存在的科学问题及可能的解决途径,以期为夏季业务预测提供参考。  相似文献   

4.
基于美国环境预测中心的CFSv2模式输出的1984—2009年6—8月平均气温和降水量格点数据,以及巴彦淖尔市9个气象台站的气温和降水实况数据,评估该模式对巴彦淖尔市6—8月气温、降水的预测能力。结果表明:模式对气温气候平均态的模拟和实况分布存在差异,降水反映出东多西少的分布特征,但气候平均值明显偏小。模式预测气温明显高于实况,但能够较好地反映26a气温的变化趋势,两者年际变化相关显著;模式预测降水量平均仅为实况降水量的1/2,并且对>50mm月降水量的预测能力较差。Pc、Ps评分检验显示,6月评分高于7、8月,降水量高于气温,模式对降水量预测的Ps评分已达到业务考核标准,经量级订正后,可以业务应用。  相似文献   

5.
基于时间尺度分离的中国东部夏季降水预测   总被引:2,自引:1,他引:1       下载免费PDF全文
基于时间尺度分离,利用NCEP第2代气候预测系统 (CFSv2) 每年4月起报的夏季月平均预测资料, 结合实际观测资料和再分析资料,对江淮流域及华北地区夏季降水距平百分率进行降尺度预测。将预测量和预测因子分为年际分量和年代际分量,在两个时间尺度上分别建立降尺度模型,两个预测分量之和为总预测量。对1982—2008年拟合时段的夏季降水距平百分率的回报结果表明:降尺度预测结果相对于原始模式结果预测技巧显著提高。降尺度预测与实况降水在江淮流域和华北地区的空间相关系数最大值超过0.8,多年平均值也分别提高到0.53和0.51;时间相关在每个站点也显著增强,相关系数为0.38~0.65。对2009—2013年进行独立样本检验,结果表明:降尺度模型能较好地预测出该时段的降水异常空间型态。同时,该模型对2014年夏季降水长江以南偏多、黄淮地区偏少的分布形势也有一定预测能力。  相似文献   

6.
东北地区夏季降水时空变化特征   总被引:26,自引:4,他引:26       下载免费PDF全文
采用东北地区99个测站1960~2000年逐日降水资料,运用小波分析、突变分析、旋转EOF等方法,研究了东北地区不同区域夏季降水的长期变化特征。结果表明,东北地区夏季降水呈减少趋势,并存在14年和2~4年的变化周期。东北地区夏季降水异常可分为5种空间分布类型:东北西南部型、东北东南部型,东北东北部型、东北西北部型、东北中部型。东北东南部地区夏季降水减少趋势最明显,东北西南部降水的增加趋势最明显。各区域降水的变化周期有所区别,东北东北部存在16~18年的变化周期,其它地区存在10~14年的变化周期,各区域降水突变的时间主要在60年代和80年代。  相似文献   

7.
利用宝鸡地区155个县区级或乡镇级自动站的观测资料与WRF模式的输出产品,检验WRF模式对2013年夏季最高、最低气温和降水预报的效果。结果表明:WRF模式预报的最高、最低气温的空间分布形态与实况较为一致,对于阴天和降水情况下的气温预报具有较高的准确性,最高、最低温度的预报值较实况整体偏低。WRF模式对宝鸡地区东部晴雨预报准确率较高,达到65%以上;凤县、太白最差,仅为40%左右。WRF模式预报的夏季日平均降水量与实况值在量级上较为一致,但空间分布误差较大。模式3个时次预报的逐日降水量能够较为准确地描述夏季各次降水的发生—发展—减弱过程。通过对模式预报的降水量进行分级检验发现,模式对降水的预报能力随着降水量级的增大而减小,空报多于漏报;WRF模式的暴雨预报值得参考。  相似文献   

8.
东北夏季天气分型及EC降水预报空间检验   总被引:1,自引:0,他引:1  
利用SANDRA(SAN)方法将东北地区2018年5—9月环流背景分型,并在此基础上对EC模式预报的较强降水(>10 mm/24 h)进行空间检验和定量分析。东北地区主要的形势背景分为北部扰动低压型、副热带高压北抬型、东北扰动低涡型、扰动低压东移型。其中,前3类环流型对应较强降水过程发生频率相对较高;将3种类型对应的模式预报较强降水过程进行分析。结果表明:模式对于北部扰动低压型过程中大雨以上量级降水落区面积的预报较实况普遍偏小45%—60%;中雨量级降水落区面积,36 h时效预报较实况偏大40%,84 h时效偏小19%;36 h、60 h、84 h时效,较强降水预报位置偏西分别为0.19°、0.53°、1.39°,平均强度预报分别偏低2.9 mm、3.1 mm、3.4 mm,极值预报分别偏低7.3 mm、8.1 mm、9.4 mm;副热带高压北抬型过程预报面积与实况之间的偏差没有一致的倾向性,预报位置较实况分别偏南0.25°、0.15°、0.37°,降水强度上有65%—72%的个例表现为平均强度及极值预报较实况偏弱的特征;东北扰动低涡型过程,预报位置偏差分别为36 h偏东0.18°、偏南0.55°,60 h偏东0.20°、偏南0.58°和84 h偏东0.74°;另外,3个时效对应平均强度预报分别偏低3.3 mm、3.7 mm、3.9 mm,极值预报平均偏低为10.2 mm、10.6 mm、11.6 mm。  相似文献   

9.
张丹琦  孙凤华  张耀存 《高原气象》2019,38(6):1229-1240
利用BCC第二代气候预测模式系统1996-2015年提前1~3个月的回报试验结果,评估了模式在季节尺度上预测中国夏季降水空间分布和降水异常的能力,分析了模式预报效果的年际差异,并探讨了模式预测误差产生的可能原因。结果表明,模式对中国夏季降水的季节预测具有一定的技巧,西南至长江中下游南部、黄淮平原西部、东北北部及藏北高原等地区季节预测技巧较高,同时,模式对降水距平预报效果整体较好,其中在长江中下游、黄淮地区、华南地区、西北地区及东北北部距平符号一致率较高。而模式对降水季节预测的偏差主要表现为我国东部降水量强度预测偏小,对夏季降水异常的预报技巧有限,且不同年份模式的预测效果差异较大。模式对夏季西太平洋及印度洋高海温区范围预测偏小,对副热带高压和东亚地区低层水汽辐合的强度预测偏弱,从而导致风场与环流场的配置与观测不一致,使得模式对我国东部夏季降水预测显著偏少。从模式预测效果年际差异来看,当华南地区实况降水量偏多、长江中下游及东北地区降水量偏少时,模式具有较高的预测技巧,反之,模式的预报技巧较低。分析中国东部降水与海温的相关关系发现,夏季西北太平洋、热带西太平洋和北印度洋是影响中国东部夏季降水的关键区域,模式中西北太平洋海温偏低对模式预报技巧具有重要影响,海温场、高度场、风场及水汽通量散度场不同的相互配置导致中国东部夏季降水的分布及强度差异,而模式不能合理把握各物理量场间相互作用过程,从而影响模式的预报效果。因此,改进模式对外强迫因子与降水异常相关关系的预测能力是提高我国夏季降水季节预测技巧的主要途径。  相似文献   

10.
基于聚类分区的中国夏季降水预测模型   总被引:1,自引:0,他引:1  
文章基于近邻传播客观聚类方法对中国夏季降水进行了气候分区,以中国不同分区的夏季降水为预测对象,使用前期的海温和海平面气压场为预测因子,利用图像标签算法提取高相关封闭区域的预测因子信息。结合最小二乘回归法建立预测模型。采用Ps评分、距平符号一致率和距平相关系数三种评分方法检验了该预测模型,比较了四种不同的因子配置方案的预测能力。研究结果表明,利用冬春季海温的演变特征结合海平面气压的年际变化为预测因子的分区预测模型效果较好,在1982—2009年期间的平均交叉检验平均Ps得分为81.4,距平符号一致率为63%,距平相关系数为0.35,2010—2014期间的独立样本预测检验的平均评分分别为77.1,58%和0.19,且逐年回报效果较为稳定,表明该方法对中国夏季降水有较好的预测效果。研究结果显示,该预测模型能较好地预测出2014年中国夏季降水南多北少的分布特征。  相似文献   

11.
利用重建的1880-1950年500 hPa高度场资料和1951-2004年的NCEP/NCAR再分析资料,分析了年际尺度上东亚地区夏季大气环流变化特征。结果表明:夏季在东亚沿岸存在一个明显的自北向南的正-负-正环流模态,即鄂霍次克海阻塞高压与副热带高压存在一种同向变化、而它们之间区域的高度场为反向变化的遥相关关系;同时分析了这种大气环流模态与1880-2004年中国东部地区夏季降水的关系。在年际尺度上,正-负-正的环流模态与长江中下游地区和东北的降水有很好的正相关,当夏季的环流处在阻塞高压偏强,且副热带高压偏南偏强、日本及其以东地区上空高度场偏低时,中国长江中下游地区和东北降水偏多。  相似文献   

12.
 利用重建的1880-1950年500 hPa高度场资料和1951-2004年的NCEP/NCAR再分析资料,分析了年际尺度上东亚地区夏季大气环流变化特征。结果表明:夏季在东亚沿岸存在一个明显的自北向南的正-负-正环流模态,即鄂霍次克海阻塞高压与副热带高压存在一种同向变化、而它们之间区域的高度场为反向变化的遥相关关系;同时分析了这种大气环流模态与1880-2004年中国东部地区夏季降水的关系。在年际尺度上,正-负-正的环流模态与长江中下游地区和东北的降水有很好的正相关,当夏季的环流处在阻塞高压偏强,且副热带高压偏南偏强、日本及其以东地区上空高度场偏低时,中国长江中下游地区和东北降水偏多。  相似文献   

13.
本文利用1979~2015年GPCP(Global Precipitation Climatology Project)逐月降水资料,采用经验正交函数(EOF)分解和Morlet小波分析方法,对东北亚地区初夏、盛夏和传统夏季降水的时空分布特征以及环流型开展了系统性的研究,揭示了东北亚地区传统夏季降水表现为盛夏降水贡献占主导,其年际和年代际特征以及环流特征同盛夏降水特征相一致,而初夏降水和盛夏降水特征及形成机制则具有显著差异。空间分布上,初夏的降水EOF第一模态表现为“+-+”的三极型分布,而盛夏和传统夏季则表现为南北相反的偶极型特征;时间演变方面,初夏降水表现为5~6 a振荡周期,盛夏为2~3 a为主的振荡周期,传统夏季则兼具上述两类振荡周期;在年代际调整方面,在1990年代末,盛夏降水和传统夏季降水在华北和东北地区发生了显著的年代际转折。此外,分析降水与环流的联系发现:初夏,由于西太平洋上空异常反气旋将西太平洋等地的水汽向北方地区输送,且受欧亚Ⅱ型(EUII)遥相关的作用,东北亚地区初夏降水异常具有明显纬向特征。盛夏,东北亚地区降水主要受到西太平洋副热带高压西伸北进、孟加拉湾和南海等地水汽加强的影响。欧亚Ⅰ型(EUI)遥相关和亚洲太平洋型(EAP)遥相关与我国东北以西和沿海地区的降水具有显著相关性。EU型遥相关的作用使东北亚夏季降水的异常中心存在西北—东南向的波列特征,EAP型遥相关的作用则使夏季降水存在经向三极型或偶极型特征。  相似文献   

14.
A Study of the Teleconnections in the Asian-Pacific Monsoon Region   总被引:2,自引:0,他引:2       下载免费PDF全文
The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The  相似文献   

15.
利用1979-2015年海洋和大气再分析资料,基于夏季太平洋-日本遥相关型(PJ)指数,讨论了PJ指数在极端正负年份长江中下游降水位置和强度异常的不对称响应及其可能原因。结果表明:在PJ负位相年(对应El Niňo次年),长江中下游降水显著偏多,中心分别位于江淮流域和日本南部;而在PJ正位相年(对应La Niňa次年),长江中下游降水减少却不明显。研究发现:在PJ负位相年,中东太平洋、印度洋、南海地区海温明显偏暖,菲律宾海上空有异常反气旋响应,长江中下游地区有异常气旋响应;而在PJ正位相年则反之。在PJ负(正)位相年,菲律宾海异常反气旋(气旋)和长江中下游地区异常气旋(反气旋)明显偏强(偏弱),由此导致长江中下游降水位置和强度异常存在不对称响应。基于大气环流模式ECHAM4.8的敏感性数值试验结果表明,即使印度洋海温偏暖与偏冷程度相当,但由偏暖印度洋海温激发的菲律宾海异常反气旋也明显偏强,从而造成长江中下游地区降水偏多程度大于偏少程度。由此印证的事实是:El Niňo次年(PJ负位相年)长江中下游夏季降水偏多的预测技巧高于La Niňa次年夏季降水偏少的预测技巧。  相似文献   

16.
本文首先利用1979~2008年中国756个站点和GPCP2.1的降水资料与Hadley中心的HadISST再分析海温资料以及应用合成和相关分析方法, 分析了中国东部夏季降水年际变化及其与东中国海及邻近海域海温异常的关系。分析结果表明: 当东中国海及邻近海域为暖 (冷) 异常时, 长江中下游、 江淮地区夏季降水减少 (偏多), 而东北南部的降水偏多 (减少)。并且, 本文应用RegCM3区域气候模式对上述关系进行数值试验, 结果表明了东中国海及邻近海域的暖 (冷) 异常, 将使得我国长江、 黄淮流域和华北大部分地区夏季降水的减少 (增加), 而华南地区、 东北南部和朝鲜半岛等地夏季降水的增加 (减少)。此外, 本文还利用NCEP/NCAR再分析资料和数值模拟对上述关系的大气环流变异过程进行了分析, 分析结果揭示了上述海域的升温或降温对东亚地区上空的纬向和经向环流有较明显的影响。当东中国海及邻近海域升温时, 除了在该海域东部引起低空辐合, 高空辐散, 产生上升运动外, 还在其西部的长江、 黄淮流域和华北地区引起低空辐散, 高空辐合, 产生下沉运动, 这将引起长江、 黄淮流域和华北等地夏季降水的减少; 并在华南、 东北南部和朝鲜半岛地区引起低空辐合, 高空辐散, 从而产生上升运动, 这使得华南地区、 东北南部和朝鲜半岛夏季降水的增加。反之, 当东中国海及邻近海域降温时, 上述区域出现相反的现象。这些都说明东中国海及邻近海域的热力状态可能是影响我国东部夏季降水的重要因子之一。  相似文献   

17.
A regional air-sea coupled model based on the regional climate model(RegCM3)and the regional oceanic model POM(Princeton Ocean Model)is developed and a series of experiments are performed to verify the ability of the coupled model in simulating the summer precipitation over China from 1963 to 2002.The results show that the space correlation coefficients between the GISST(Global Ice and Sea Surface Temperature)data and the simulated SST by RegCM3-POM exceed 0.9.Compared with the uncoupled experiments,the coupled model RegCM3-POM has a better performance in simulating the mean summer(June to August)precipitation over China,and the distribution of the rainband in the coupled model is more accurate.The improvement of the rainfall simulation is significant over the Yangtze River Valley and in South China.The rainbelt intraseasoaal evolution over eastern China in summer indicates that the simulation ability of RegCM3-POM is improved in comparison with the uncoupled model.The interannual summer rainfall variation over eastern China simulated by RegCM3-POM is in accordance with observation,while the spatial pattern of the interannual summer rainfall variation in the uncoupled model is inaccurate.The simulated correlation coefficient between the summer rainfall in the uncoupled model RegCM3 and observation is0.30 over the Yangtze River Valley and 0.29 in South China.The coefficient between the rainfall in the coupled RegCM3-POM and observation is 0.48 over the Yangtze River Valley and 0.61 in South China.The RegCM3-POM has successfully simulated the correlation coefficients between summer rainfall in the Yangtze River Valley and SST anomalies of the Bay of Bengal,South China Sea,and the Kuroshio area,whereas the uncoupled model RegCM3 fails to reproduce this relationship.The study further shows that the monsoon circulation and the path of the moisture transport flux simulated by RegCM3-POM are in good agreement with the NCEP/NCAR data.  相似文献   

18.
北方雨季中国东部降水异常模态的环流特征及成因分析   总被引:2,自引:2,他引:0  
郭恒  张庆云 《大气科学》2016,40(5):946-964
根据1958~2011年中国东部(105°E以东)316站逐日降水资料及NCEP/NCAR逐日再分析资料,利用统计分析、物理量诊断等方法,探讨北方雨季(7月11日至8月31日)中国东部降水异常模态及同期、前期的大气环流特征。分析发现,北方雨季中国东部降水异常表现为三个相互独立的降水模态:第一模态为偏西型,当其时间系数为正(负)时,河套地区降水偏多(少),江淮流域上游降水偏少(多),南方大部降水偏多(少);第二模态为北方一致型,当其时间系数为正(负)时,北方降水一致偏多(少),长江流域降水偏少(多);第三模态为偏东型,当其时间系数为正(负)时,东北南部至长江中游降水偏多(少),华东沿海降水偏少(多)。研究发现,造成北方雨季三个降水异常模态的环流特征各不相同:偏西型降水主要受西亚高空副热带西风急流位置南北偏移影响;北方一致型降水主要由东亚-太平洋遥相关波列导致;偏东型降水主要与海陆气压异常对比造成的东亚夏季风变化有关。此外,三个模态与前期环流异常有密切联系。第一模态的正(负)异常由7月上旬200 hPa来自北大西洋的异常波列造成乌拉尔山位势高度负(正)异常和巴尔喀什湖以南位势高度正(负)异常引起。第二模态的正(负)异常与前期7月上旬200 hPa北大西洋上位势高度负(正)异常产生的沿中纬度(高纬度)路径向下游传播的波列有关。第三模态的正(负)异常由春季3月份低层蒙古上空异常的气旋(反气旋)持续至同期造成。  相似文献   

19.
转折性天气降水预报检验方法及应用   总被引:3,自引:0,他引:3  
张冰  魏建苏  王文兰  张备 《气象科技》2012,40(3):411-416
采用转折性天气降水检验评估方法,从转折天气预报能力的角度评价了模式降水预报能力。对全球中期T213、日本和德国数值预报模式在2006年9月至2008年8月的降水预报检验评估分析表明:转折天气降水预报能力检验是目前降水检验方法的有效补充。3种模式的转折天气降水预报能力随着预报时效的延长,存在逐渐递减的趋势;短期预报能力分析,T213和日本模式春季最好,而德国模式是夏季最好;48h预报分析,T213和日本模式在长江中下游、华北及东北等部分地区、德国模式在四川盆地和华南部分地区预报效果较好。  相似文献   

20.
利用中国东部160个气象观测站1951年-2012年夏季(6-8月)的月平均降水资料,运用EOF分析方法,分析中国东部夏季降水的时空分布特征及其与西太平洋副热带高压的关系。结果表明:(1)夏季,中国东部降水大值区域从华南移到江淮流域,然后到达华北和东北地区。(2) 中国东部夏季降水EOF第一模态空间分布为长江以北与黄河以南地区之间存在一个降水大值雨带, EOF第二模态显示出整个东部沿海地区的降水量以长江为界,长江以南降水偏少,长江以北降水偏多,且江南与江北的降水呈反位相。(3)在西太平洋副热带高压较强的年份,江淮流域降水偏少,华北地区降水偏多;西太平洋副热带高压较弱的年份,江淮流域降水偏多,华南地区降水偏少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号