首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We present an analysis of a high resolution multi-decadal simulation of recent climate (1971–2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm/day are simulated only at the high resolution of the double nested domain. (5) The model shows a tendency to overestimate the number of precipitation days and to underestimate the precipitation intensities. (6) A CSEOF analysis reveals that the model captures the strength of the annual cycle and the surface warming trend throughout the simulated period.  相似文献   

2.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

3.
This study examines a scenario of future summer climate change for the Korean peninsula using a multi-nested regional climate system. The global-scale scenario from the ECHAM5, which has a 200 km grid, was downscaled to a 50 km grid over Asia using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). This allowed us to obtain large-scale forcing information for a one-way, double-nested Weather and Research Forecasting (WRF) model that consists of a 12 km grid over Korea and a 3 km grid near Seoul. As a pilot study prior to the multi-year simulation work the years 1995 and 2055 were selected for the present and future summers. This RSM-WRF multi-nested downscaling system was evaluated by examining a downscaled climatology in 1995 with the largescale forcing from the NCEP/Department of Energy (DOE) reanalysis. The changes in monsoonal flows over East Asia and the associated precipitation change scenario over Korea are highlighted. It is found that the RSM-WRF system is capable of reproducing large-scale features associated with the East-Asian summer monsoon (EASM) and its associated hydro-climate when it is nested by the NCEP/DOE reanalysis. The ECHAM5-based downscaled climate for the present (1995) summer is found to suffer from a weakening of the low-level jet and sub-tropical high when compared the reanalysis-based climate. Predicted changes in summer monsoon circulations between 1995 and 2055 include a strengthened subtropical high and an intensified mid-level trough. The resulting projected summer precipitation is doubled over much of South Korea, accompanied by a pronounced surface warming with a maximum of about 2 K. It is suggested that downscaling strategy of this study, with its cloud-resolving scale, makes it suitable for providing high-resolution meteorological data with which to derive hydrology or air pollution models.  相似文献   

4.
利用热带测雨卫星搭载的测雨雷达10年探测结果,就季尺度亚洲对流降水和层云降水的降水频次和强度及降水垂直结构的特点进行了研究.结果表明春、秋、冬三季东亚季平均降水环西太平洋副热带高压呈带状分布,雨强一般不超过10 mm/d;夏季,沿孟加拉湾、中国西南、中国东部至日本的大片雨区中出现了大于12 mm/d强降水;亚洲陆面对流和层云降水强度均弱于洋面.亚洲山地强迫不但可引起迎风坡上千公里长度的高降水频次和强降水带,而且导致其下风方向降水频次减少.季尺度降水频次分析表明,亚洲大部分地区对流降水频次小于3%;而层云降水频次一般大于3%,最高可超过10%;副热带高压南侧及西南侧的热带地区对流和层云降水频次均高于副热带高压北侧及西北侧的中纬度地区;降水频次的区域分布还表明,春季中南半岛至中国华南及南海南部对流活动多于同期的印度次大陆.季平均对流和层云降水廓线的季节变化主要表现为"雨顶"高度的季节变化,即降水云的厚度变化;两类降水平均廓线季节变化的区域性差异表明,热带外地区较热带地区显著、陆面较同纬度洋面显著、孟加拉湾比南海显著,而南海和西太平洋暖池无明显的季节变化.此外,降水结构的剖面分析还表明对流降水存在4层结构、层云降水存在3层结构.  相似文献   

5.
Distribution of seasonal rainfall in the East Asian monsoon region   总被引:8,自引:1,他引:8  
Summary ?This study deals with the climatological aspect of seasonal rainfall distribution in the East Asian monsoon region, which includes China, Korea and Japan. Rainfall patterns in these three countries have been investigated, but little attention has been paid to the linkages between them. This paper has contributed to the understanding of the inter-linkage of various sub-regions. Three datasets are used. One consists of several hundred gauges from China and South Korea. The second is based on the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP). The two sources of precipitation information are found to be consistent. The third dataset is the NCEP/NCAR reanalysis 850-hPa winds. The CMAP precipitation shows that the seasonal transition over East Asia from the boreal winter to the boreal summer monsoon component occurs abruptly in mid-May. From late March to early May, the spring rainy season usually appears over South China and the East China Sea, but it is not so pronounced in Japan. The summer monsoon rainy season over East Asia commonly begins from mid-May to late May along longitudes of eastern China, the Korean Peninsula, and Japan. A strong quasi-20-day sub-seasonal oscillation in the precipitation appears to be dominant during this rainy season. The end date of the summer monsoon rainy season in eastern China and Japan occurs in late July, while the end date in the Korean Peninsula is around early August. The autumn rainy season in the Korean Peninsula has a major range from mid-August to mid-September. In southern China, the autumn rainy season prevails from late August to mid-October but a short autumn rainy season from late August to early September is noted in the lower part of the Yangtze River. In Japan, the autumn rainy season is relatively longer from mid-September to late October. The sub-seasonal rainfall oscillation in Korea, eastern China and Japan are explained by, and comparable to, the 850-hPa circulation. The strong westerly frontal zone can control the location of the Meiyu, the Changma, and the Baiu in East Asia. The reason that the seasonal sea surface temperature change in the northwestern Pacific plays a critical role in the northward advance of the onset of the summer monsoon rainfall over East Asia is also discussed. Received October 5, 2001; revised April 23, 2002; accepted May 11, 2002  相似文献   

6.
Summary In this paper, we investigate the role that horizontal resolution plays in the simulation of East Asia precipitation. Two sets of numerical experiments are performed using the Regional Climate Model (RegCM2) nested in one-way mode within the CSIRO global coupled atmosphere-ocean model. In the first set we use the actual RegCM2 topography at the selected model resolutions, which are 45, 60, 90, 120, 180, 240 and 360 km. In the second set of the experiments, the same coarse CSIRO model topography is used in all simulations using the different resolutions of the first set. The results demonstrate that the simulation of East Asian precipitation improves as the horizontal resolution is increased. Moreover, it is shown that the simulations using a higher resolution along with the coarse CSIRO topography perform better than the simulations using a coarser model resolution with corresponding model topography. This suggests that over East Asia adequate spatial resolution to resolve the physical and dynamical processes is more important than topography. Lastly, the results indicate that model resolutions of 60 km or higher are needed to accurately simulate the distribution of precipitation over China and East Asia.  相似文献   

7.
常炉予  何金海  祁莉  温敏 《气象学报》2013,71(6):1074-1088
利用NCEP/ NCAR 再分析资料和CMAP、GPCP卫星反演降水资料,对比分析了东亚与北美东部地区降水和大尺度大气环流季节演变特征的差异。结果显示,东亚和北美东部地区冬季环流形势较为相似,而夏季差异则较大,这正是东亚为季风区,北美为非季风区的表现。此外,基于季风的两大特征量“风”和“雨”,分析了两地降水和低空风场季节变化的显著差异:东亚副热带地区降水季节变率大,呈“夏湿冬干”的季风降水特征,低层盛行风向随季节逆转,冬季盛行偏北风,夏季盛行偏南风,具有显著的副热带季风区特征。北美东部副热带地区全年雨量分配均匀,低层常年盛行偏西风,呈现非季风区特征。进一步的分析发现,作为季风基本推动力的海、陆热力差异在东亚和北美东部地区有着显著的区别:东亚地区的经向和纬向温度梯度随季节反转的特征显著;而北美东部地区虽有纬向温度梯度的季节反转但幅度很小,且经向海、陆热力差异随季节反转不明显。此外,与青藏高原和落基山脉相伴的纬向环流也存在显著差异。鉴于此,提出经向和纬向海、陆热力梯度反转特征的不同以及青藏高原和落基山脉地形的不同作用很可能是造成东亚副热带季风气候而北美东部非季风气候的主要原因,上述结论还有待于数值试验的进一步证实。  相似文献   

8.
We analyze a set of nine regional climate model simulations for the period 1961–2000 performed at 25 and 50 km horizontal grid spacing over a European domain in order to determine the effects of horizontal resolution on the simulation of precipitation. All of the models represent the seasonal mean spatial patterns and amount of precipitation fairly well. Most models exhibit a tendency to over-predict precipitation, resulting in a domain-average total bias for the ensemble mean of about 20% in winter (DJF) and less than 10% in summer (JJA) at both resolutions, although this bias could be artificially enhanced by the lack of a gauge correction in the observations. A majority of the models show increased precipitation at 25 km relative to 50 km over the oceans and inland seas in DJF, JJA, and ANN (annual average), although the response is strongest during JJA. The ratio of convective precipitation to total precipitation decreases over land for most models at 25 km. In addition, there is an increase in interannual variability in many of the models at 25 km grid spacing. Comparison with gridded observations indicates that a majority of models show improved skill in simulating both the spatial pattern and temporal evolution of precipitation at 25 km compared to 50 km during the summer months, but not in winter or on an annual mean basis. Model skill at higher resolution in simulating the spatial and temporal character of seasonal precipitation is found especially for Great Britain. This geographic dependence of the increased skill suggests that observed data of sufficient density are necessary to capture fine-scale climate signals. As climate models increase their horizontal resolution, it is thus a key priority to produce high quality fine scale observations for model evaluation.  相似文献   

9.
Recent Progress in the Impact of the Tibetan Plateau on Climate in China   总被引:14,自引:0,他引:14  
Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From satellite data analysis, it is demonstrated that most of the precipitation over the TP is from deep convection clouds. Moreover, the huge TP mechanical forcing and extraordinary elevated thermal forcing impose remarkable impacts upon local circulation and global climate. In winter and spring, stream flow is deflected by a large obstacle and appears as an asymmetric dipole, making East Asia much colder than mid Asia in winter and forming persistent rainfall in late winter and early spring over South China. In late spring, TP heating contributes to the establishment and intensification of the South Asian high and the abrupt seasonal transition of the surrounding circulations. In summer, TP heating in conjunction with the TP air pump cause the deviating stream field to resemble a cyclonic spiral, converging towards and rising over the TP. Therefore, the prominent Asian monsoon climate over East Asia and the dry climate over mid Asia in summer are forced by both TP local forcing and Eurasian continental forcing.
Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast.
On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP lea  相似文献   

10.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

11.
An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.  相似文献   

12.
The atmospheric branch of the hydrological cycle associated with the East Asian summer monsoon is intricate due to its distinct land-sea configurations: the highest mountains are to its west, the oceans are to its south and east, and mid-latitude influences come from its north. Here we use the weather research and forecast (WRF) model to demonstrate that using two different large-scale driving fields, derived from the NCEP/DOE R2 and ERA40 reanalysis data and the same model configuration yielded remarkable differences. We found that the differences are primarily caused by uncertainties in the water vapor influx across the lateral boundaries in the reanalyses. The summer-mean water vapor convergence into the model domain computed from the ERA40 reanalysis is 47% higher than that from the R2 reanalysis. The largest uncertainties in moisture transport are found in the regions of the Philippine Sea and the Bay of Bengal, where the moisture transport has the most significant impacts on the East Asian summer monsoon rainfall distribution. The sensitivity test results suggest that the biases in the seasonal mean, seasonal march of the rain band, and individual rainfall events may be reduced by using an “ensemble” average of R2 and ERA40 as lateral boundary forcing. While the large-scale forcing field does not conserve water vapor, the WRF simulation conserves water vapor in the inner model domain. The regional model simulation has corrected the biases in the total amount and the month-to-month distribution of precipitation in the large-scale driving field. However, RCM’s daily precipitation is poorer than that in the reanalysis filed. Since the RCM solutions may sensitively depend on the reanalysis forcing, intercomparison of models’ performance based on a single set of the reanalysis may not be reliable. This calls for attention to reshape our strategy for validation of RCMs.  相似文献   

13.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

14.
Summary The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Out of the 22 models examined, 14 reproduce the observed shape of the annual cycle well with peak during the boreal summer (June through August), but with varying magnitude. Three models simulate the maximum a month later and with lower magnitudes. Only one model considerably underestimates the magnitude of the annual cycle. The remaining 4 models show some deviations from the observed. Models are unable to simulate the minimum in July with peaks in June and August associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The realistic simulation of the annual cycle does not appear to depend on the model resolution. The inter-model variation is slightly larger during summer, implying larger diversity of the models in simulating summer monsoon precipitation. The spatial rainfall patterns are reasonably well simulated by most of the models, with several models able to simulate the precipitation associated with the Meiyu-Changma-Baiu frontal zone and that associated with the location of the subtropical high over the north Pacific. Simulated spatial distribution could be sensitive to model resolution as evidenced by two versions of MIROC3.2 model. The multi-model ensemble (MME) pattern reveals an underestimation of seasonal precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions. This may be related with the mass-flux based scheme employed for convective parameterization by majority of the models. Further the inter-model variation of precipitation is about 2 times stronger south of 30° N, than north of this latitude, indicating larger diversity of the coupled models in simulating low latitude precipitation. The simulated inter-annual variability is estimated by computing the mean summer monsoon seasonal rainfall and the coefficient of variability (CV). In general the mean observed seasonal precipitation of 542 mm and CV of 6.7% is very well simulated by most of the models. Except for one model mean seasonal precipitation varies from 400 to 650 mm. However the CV varies from 2 to 9%. Future projections under the radiative forcing of doubled CO2 scenario are examined for individual models and by the MME technique. Changes in mean precipitation and variability are tested by the t-test and F-ratio respectively to evaluate their statistical significance. The changes in mean precipitation vary from −0.6% (CNRM-CM3) to about 14% (ECHO-G; UKMO-HadCM3). The MME technique reveals an increase varying from 5 to 10%, with an average of 7.8% (greater than the observed CV of 6.7%) over the East Asian region. However the increases are significant over the Korea-Japan peninsula and the adjoining north China region only. The increases may be attributed to the projected intensification of the subtropical high, Meiyu-Changma-Baiu frontal zone and the associated influx of moist air from the Pacific inland. The projected changes in the amount of precipitation are directly proportional to the projected changes in the strength of the subtropical high. Further the MME suggests a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn. The changes in precipitation could be stabilized by controlling the CO2 emissions.  相似文献   

15.
地形在东亚夏季风环流中的作用   总被引:2,自引:0,他引:2  
本文应用大气所二室改建的二层球谱模式,引入OSU二层格点模式的物理过程,模拟了5月份东南亚和我国南海的夏季风环流。通过有无地形作用的对比试验,揭示出地形对东亚夏季风环流的建立以及季风区降水和大气热源的形成起了重要作用。   相似文献   

16.
Simulations of the East Asian summer monsoon for the period of 1979–2001 were carried out using the Weather Research and Forecast (WRF) model forced by three reanalysis datasets (NCEP-R2, ERA-40, and JRA-25). The experiments forced by different reanalysis data exhibited remarkable differences, primarily caused by uncertainties in the lateral boundary (LB) moisture fluxes over the Bay of Bengal and the Philippine Sea. The climatological mean water vapor convergence into the model domain computed from ERA-40 was about 24% higher than that from the NCEP-R2 reanalysis. We demonstrate that using the ensemble mean of NCEP-R2, ERA-40, and JRA-25 as LB forcing considerably reduced the biases in the model simulation. The use of ensemble forcing improved the performance in simulated mean circulation and precipitation, inter-annual variation in seasonal precipitation, and daily precipitation. The model simulated precipitation was superior to that in the reanalysis in both climatology and year-to-year variations, indicating the added value of dynamic downscaling. The results suggest that models having better performance under one set of LB forcing might worsen when another set of reanalysis data is used as LB forcing. Use of ensemble mean LB forcing for assessing regional climate model performance is recommended.  相似文献   

17.
We present an analysis of a regional simulation of present-day climate (1981–1990) over southern South America. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. We evaluate the capability of the model in simulating the observed climate with emphasis on low-level circulation patterns and surface variables, such as precipitation and surface air mean, maximum and minimum temperatures. The regional model performance was evaluated in terms of seasonal means, seasonal cycles, interannual variability and extreme events. Overall, the regional model is able to capture the main features of the observed mean surface climate over South America, its seasonal evolution and the regional detail due to topographic forcing. The observed regional patterns of surface air temperatures (mean, maxima and minima) are well reproduced. Biases are mostly within 3°C, temperature being overestimated over central Argentina and underestimated in mountainous regions during all seasons. Biases in northeastern Argentina and southeastern Brazil are positive during austral spring season and negative in other seasons. In general, maximum temperatures are better represented than minimum temperatures. Warm bias is larger during austral summer for maximum temperature and during austral winter for minimum temperature, mainly over central Argentina. The broad spatial pattern of precipitation and its seasonal evolution are well captured; however, the regional model overestimates the precipitation over the Andes region in all seasons and in southern Brazil during summer. Precipitation amounts are underestimated over the La Plata basin from fall to spring. Extremes of precipitation are better reproduced by the regional model compared with the driving model. Interannual variability is well reproduced too, but strongly regulated by boundary conditions, particularly during summer months. Overall, taking into account the quality of the simulation, we can conclude that the regional model is capable in reproducing the main regional patterns and seasonal cycle of surface variables. The present reference simulation constitutes the basis to examine the climate change simulations resulting from the A2 and B2 forcing scenarios which are being reported in a separate study.  相似文献   

18.
In this paper, we present the results from high-resolution numerical simulations of three heavy rainfall events over the Korean Peninsula. The numerical results show that the prediction accuracy for heavy rainfall events improved as horizontal resolution increased. The fine-grid precipitation fields were much closer to the real precipitation fields in the case of large synoptic forcing over the Korean Peninsula. In the case of large convective available potential energy and weak synoptic forcing, it seems that even when using a high resolution, the models still showed poor performance in reproducing the observed high precipitation amounts. However, activation of the cumulus parameterization scheme in the intermediate resolution of 9 km, even at a grid spacing of 3 km, had a positive impact on the simulation of the heavy rainfall event.  相似文献   

19.
唐民  吕俊梅 《气象》2007,33(10):88-95
利用全球陆地月平均降水资料、英国气象局哈德莱中心的月平均海表温度距平(SSTA)资料及NCEP/NCAR再分析大气环流资料,探讨东亚夏季风降水年代际变率及其与太平洋年代际振荡(PDO)的联系。研究指出:东亚夏季风降水年代际变异模态以及PDO均在1976年前后呈现显著的年代际转折,并且东亚夏季风降水与PDO在年代际尺度上具有较好的相关关系。PDO能够在对流层低层激发出与年代际东亚夏季风环流较为相似的大气环流异常特征,表明东亚夏季风环流的年代际变化可能受大气外强迫因子PDO在对流层低层的外源强迫作用影响,最终导致东亚夏季风降水发生年代际变化。  相似文献   

20.
Summary We use the regional climate model RegCM nested within time-slice atmospheric general circulation model experiments to investigate the possible changes of intense and extreme precipitation over the French Maritime Alps in response to global climate change. This is a region with complex orography where heavy and/or extended precipitation episodes induced catastrophic floods during the last decades. Output from a 30-year simulation of present-day climate (1961–1990) is first analysed and compared with NCEP reanalysed 700 hPa geopotential heights (Z700) and daily precipitation observations from the Alpine Precipitation Climatology (1966–1999). Two simulations under forcing from the A2 and B2 IPCC emission scenarios for the period 2071–2100 are used to investigate projected changes in extreme precipitation for our region of interest. In general, the model overestimates the annual cycle of precipitation. The climate change projections show some increase of precipitation, mostly outside the warm period for the B2 scenario, and some increase in the variability of the annual precipitation totals for the A2 scenario. The model reproduces the main observed patterns of the spatial leading EOFs in the Z700 field over the Atlantic-European domain. The simulated large scale circulation (LSC) variability does not differ significantly from that of the reanalysis data provided the EOFs are computed on the same domain. Two similar clusters of LSC corresponding to heavy precipitation days were identified for both simulated and observed data and their patterns do not change significantly in the climate change scenarios. The analysis of frequency histograms of extreme indices shows that the control simulation systematically underestimates the observed heavy precipitation expressed as the 90th percentile of rainday amounts in all seasons except summer and better reproduces the greatest 5-day precipitation accumulation. The main hydrological changes projected for the Maritime Alps consist of an increase of most intense wet spell precipitation during winters for both scenarios and during autumn for the B2 scenario. Case studies of heavy precipitation events show that the RegCM is capable to reproduce the physical mechanisms responsible for heavy precipitation over our region of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号