首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) 25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23–25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19–23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole, mica, and sphene compositions suggest that the peralkaline magma evolved from metaluminous magma. Extensive feldspar fractionation occurred during evolution of the peralkaline magmas, but additional alkali and iron enrichment was likely a result of high halogen fluxes from crystallizing plutons and basaltic magmas at depth.  相似文献   

2.
班公湖-怒江缝合带西段出露大量中酸性侵入岩,为特提斯洋俯冲、拉萨地块与羌塘地块碰撞造山过程中岩浆响应的重要组成部分。本文对该缝合带西段阿翁错地区的闪长岩、花岗闪长岩和花岗岩进行了详细的岩石地球化学和锆石U-Pb年代学研究。锆石LA-ICP-MS U-Pb定年结果表明闪长岩、花岗闪长岩、花岗岩成岩年龄分别为119.3±1.8 Ma、114.7±1.4 Ma和103.2±1.3 Ma。岩石地球化学特征显示中酸性侵入岩属高钾钙碱性系列,具准铝质-弱过铝质I型花岗岩特征;其LREE分馏程度较高,而HREE近于平坦,存在Eu负异常;富集Rb、La等大离子亲石元素和Th、Zr、Hf等高场强元素,亏损Nb、Ta、P、Ti等高场强元素,具有岛弧岩浆岩的特征。研究结果表明在早白垩世晚期(103.0±1.3 Ma)班公湖-怒江特提斯洋壳仍在向北俯冲于南羌塘地块之下,随着俯冲深度增加,大洋板片发生大规模脱水,释放的流体交代地幔楔并引发其部分熔融,产生的幔源岩浆向上运移,与下地壳物质不同比例混合形成了闪长岩和花岗闪长岩;而花岗岩主要由古老下地壳物质部分熔融形成,并有少量地幔物质的参与。  相似文献   

3.
内蒙古固阳地区位于华北克拉通北缘,区内出露大规模晚古生代早石炭世花岗岩,花岗闪长岩呈脉状侵入于主体花 岗岩中,同时脉状侵入岩中还有闪长岩包体存在。对这三类岩石分别进行岩石地球化学分析和SHRIMP锆石U- Pb同位素 测定,结果表明3个样品均富集LILE和LREEs,且具有REE轻度分馏,Nb、Ta与Ti负异常,Rb、Th和K正异常的特征,为 钙碱性系列。花岗岩、花岗闪长岩和闪长岩三个岩体的SHRIMP锆石U-Pb定年结果分别为:330.8Ma、324.7Ma、329.2 Ma,属 于早石炭世。早石炭世华北克拉通与西伯利亚板块尚未发生碰撞,固阳地区北部的早石炭世岩体应为古亚洲洋向华北板 块俯冲的结果。花岗岩主要源于陆壳物质的重熔,花岗闪长岩可能来源于花岗质岩浆和闪长质岩浆的混合作用。  相似文献   

4.
对北祁连山东段宁夏西吉盆地花岗岩地球化学特征和U-Pb年龄进行研究,并与区域上中酸性岩体进行对比。西吉盆地花岗岩属高钾钙碱性系列,具有富钠、过铝质的特征,LREE/HREE=10.89~11.93,轻稀土元素相对富集,分馏明显,重稀土元素分馏不明显,具有陆缘弧岩石的特点。岩石负Eu异常不明显,轻、重稀土元素分馏明显(La_N/Yb_N=10.90~15.41)。在微量元素组成上,花岗岩富集大离子亲石元素Rb、Th、Pb、La,亏损Sr、Ta、Nb、Ce、Ti元素,Pr、Nd、Sm、Dy弱富集,曲线形态具有造山花岗岩的特征,并具有负Nb异常,属正常大陆弧花岗岩。西吉盆地花岗岩成因类型为Ⅰ型,形成于陆缘弧环境,为板块碰撞造山作用的产物,岩浆来源于下地壳的部分熔融。通过锆石U-Pb定年获得花岗岩结晶年龄为434.3±9.0Ma,为早志留世,属加里东期岩浆侵入活动的产物。西吉盆地花岗岩与北祁连造山带东段南华山—屈吴山一线的花岗闪长岩体及甘肃老虎山闪长岩体同属北祁连岩浆弧带,是同期岩浆活动的产物,与板块俯冲消减作用有关,间接证明了西吉盆地属于北祁连造山带。  相似文献   

5.
吉林省白头山火山岩的微量元素及其岩石学意义   总被引:2,自引:0,他引:2  
白头山火山岩中含有一套粗面岩—钠碱流岩,与下伏的长白山玄武岩组成一个岩石系列。在白头山火山岩中,REE、Zn、Zr等元素十分富集,而过渡元素及Sr、Ba等元素极其贫 化。REE配分具明显的Eu负异常,许多不相容元素在岩石系列中表现出良好的线性关系。依据微量元素行为的数学模式对这些特征进行定性分析和定量模拟,其结果表明白头山火山岩是由长白山玄武岩岩浆经结晶分异形成的。  相似文献   

6.
The Zouzan pluton is one of the intrusive bodies in the NE of Lut block enclosed by Cenozoic volcanic and sedimentary rocks. It consists of two distinct mafic and felsic magmas which are genetically unrelated. All studied rocks are calc-alkaline in nature, with LILE/REE and HFSE/REE ratios compatible with arc related magmatism. Mafic phase has dioritic composition emplaced as small stocks in felsic rocks. Geochemical characteristics in dioritic rocks (relatively high contents of incompatible elements, low Na2O and Mg#>44) suggest they were derived from partial melting of metabasalt sources in a subduction settings. Felsic phase composed of granodiorite to granite rocks with high-K calcalkaline metaluminous to slightly peraluminous signature. Major and trace element data exclude high pressure melting and metasedimentary parental in the formation of Zouzan felsic rocks. They have been formed by partial melting of mantle-derived mafic rocks. Field relation, petrographical evidences and chemical composition show that partial melting of a mantle wedge in conjunction with magma mixing and crystal fractionation would have led to generation of Zouzan pluton.  相似文献   

7.
熊子良  张宏飞  张杰 《地学前缘》2012,19(3):214-227
文中研究了北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的年代学、地球化学和Sr-Nd同位素组成。毛藏寺岩体主要岩石类型为花岗闪长岩。锆石U Pb定年获得花岗闪长岩岩浆结晶年龄为(424±4) Ma。花岗闪长岩具有高的Mg#(约55),K2O/Na2O=0.77~0.91,A/CNK=0.92~0.94,表明岩石属准铝质。在微量元素组成上,花岗闪长岩富集LILE、亏损HFSE,轻重稀土分异明显[(La/Yb)N=16.9~19.5],具有弱的Eu负异常(Eu/Eu*=0.75~0.83);花岗闪长岩具有ISr=0.706 3~0.706 5,εNd(t) =-1.5~-1.1,TDM=1.10~1.16 Ga。这些地球化学特征和Sr Nd同位素组成表明,花岗闪长岩岩浆源区为基性下地壳变玄武质岩石,但在成岩过程中有少量幔源物质的加入。黄羊河岩体主要由钾长花岗岩组成,其岩浆结晶年龄为(402±4) Ma。岩石富碱(K2O+Na2O=6.91‰~7.66%),K2O/Na2O>1,A/CNK=0.97~1.05。钾长花岗岩富集LILE及HFSE,轻重稀土元素分馏中等[(La/Yb)N =10.6~17.8],并具有明显的负Eu异常(Eu/Eu*=0.43~0.68),表明钾长花岗岩具有铝质A型花岗岩的地球化学特征。钾长花岗岩具有ISr=0.710 3~0.711 3,εNd(t)=-6.7~-6.0,TDM=1.46~1.55 Ga,反映岩浆主要来自地壳中长英质物质的部分熔融。冷龙岭地区花岗岩类的岩石成因及其岩浆演化揭示了北祁连山造山带从加里东早期的挤压构造体制向加里东晚期的伸展构造体制的演化。这些花岗岩类形成于碰撞后构造背景,岩浆的产生可能与俯冲的北祁连洋板片的断离作用有密切联系。  相似文献   

8.
The Archean greenstone belts of the Nyanzian System in western Kenya are composed principally of andesite with minor tholeiitic basalt and siliceous volcanics. The Nyanzian tholeiite is an intermediate-K tholeiite with a flat REE pattern. There are two chemically-distinct andesites: a low-K andesite (Andesite I) and a high-K andesite (Andesite II). The REE pattern of the Andesite II is enriched in light REE and depleted in heavy REE relative to Andesite I.Major and trace element calculations indicate an origin for the Nyanzian tholeiite by 35–40% equilibrium melting of a lherzolite source followed by 10% shallow fractional crystallization. Similar calculations best explain Andesite I and Andesite II by 20 and 5% melting, respectively, of an ecologite or garnet amphibolite source of Nyanzian tholeiite composition. The rhyolite may have formed either by 20–30% partial melting of a siliceous granulite or by 20–30% fractional crystallization of a granodiorite parent magma.With respect to total exposure areas, the Nyanzian volcanics have significantly less tholeiite and more Andesite and siliceous volcanics than other Archean greenstone belts. If these abundances are representative, two models are proposed to explain the anomalous abundances of Andesite and siliceous volcanics. The first model involves an Archaen upper mantle with a relatively low geothermal gradient beneath Kenya, while the second model involves a relatively cool mantle plume. Both models inhibit ascent of a significant amount of primary tholeiite to the surface and prevent formation of secondary tholeiite. Other Archean greenstone terranes with higher mantle geotherms or hotter mantle plumes would receive higher proportions of mafic and ultramafic magmas.  相似文献   

9.
Major, trace, and REE data for three localities of calc?Calkaline older granitoid rocks exposed in the north Eastern Desert of Egypt are presented. These rocks were selected to cover wide compositional spectrum of the Egyptian older granitoid varieties. They are petrographically represented by granodiorite, tonalite, quartz?Cdiorite, and quartz?Cmonzodiorite. The rocks are comparable with the peraluminous, unfractionated calc?Calkaline suites and fall within the volcanic arc and I-type granite fields. So, they can be regarded as belonging to the volcanic arc collision stage (665?C614?Ma). The granitoids are geochemically similar to other rocks recorded from continental margin arc-systems being exhibit light-REE enriched patterns with variable but chiefly positive Eu anomaly. The latter has reverse relationship with the ??REE, which was attributed to the fractionation of hornblende during partial melting. These patterns are comparable with models involving partial melting of amphibolitic source. This source must represent basalts, gabbros, or volcanics of an island arc system that were transformed to the level of the island arc crust during continental growth where the P?CT conditions are suitable for partial melting. Thus, it is plausible that the studied rocks were derived by partial melting of LREE-enriched, garnet-free, and amphibole-bearing (i.e., hydrated) mafic source. Wadi Milaha granitoids are consistent with the derivation by a high degree of partial melting (30?C40%) of amphibolite protolith in the deep crust. However, the two other localities (Wadi Umm Anab and West Gharib) are matching with 20?C30% partial melting. Within each locality, variation in rock types from granodiorite to tonalite is said to be dominated by variable degree of restite separation during magma ascent. The high water and volatile contents in Wadi Milaha granitoids allowed higher degree of partial melting (30?C40%). Moreover, the lower volatile contents in the other two localities (Wadi Umm Anab and West Gharib) gave lower degrees of partial melting (20?C30%). These processes may resemble important geodynamic features of the Arabo-Nubian Shield evolution in the north Eastern Desert of Egypt.  相似文献   

10.
The zoned pluton from Castelo Branco consists of Variscan peraluminous S-type granitic rocks. A muscovite>biotite granite in the pluton's core is surrounded successively by biotite>muscovite granodiorite, porphyritic biotite>muscovite granodiorite grading to biotite=muscovite granite, and finally by muscovite>biotite granite. ID-TIMS U–Pb ages for zircon and monazite indicate that all phases of the pluton formed at 310 ± 1 Ma. Whole-rock analyses show slight variation in 87Sr/86Sr310 Ma between 0.708 and 0.712, Nd310 Ma values between − 1 and − 4 and δ18O values between 12.2 and 13.6. These geological, mineralogical, geochemical and isotopic data indicate a crustal origin of the suite, probably from partial melting of heterogeneous Early Paleozoic pelitic country rock. In detail there is evidence for derivation from different sources, but also fractional crystallization linking some of internal plutonic phases. Least-squares analysis of major elements and modelling of trace elements indicate that the porphyritic granodiorite and biotite=muscovite granite were derived from the granodiorite magma by fractional crystallization of plagioclase, quartz, biotite and ilmenite. By contrast variation diagrams of major and trace elements in biotite and muscovite, the behaviours of Ba in microcline and whole-rock δ18O, the REE patterns of rocks and isotopic data indicate that both muscovite-dominant granites were probably originated by two distinct pulses of granite magma.  相似文献   

11.
广西栗木水溪庙稀有金属花岗岩成因   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

12.
文章对青海共和盆地东部曲乃亥花岗闪长岩体的岩石学、岩石地球化学、年代进行了研究,其结果表明:曲乃亥花岗闪长岩LA-ICP-MS锆石U-Pb定年239.4 Ma±2.8 Ma(n=16,MSWD=0.29),表示该岩体形成于中三叠世;岩石的主量元素地球化学特征值反映曲乃亥花岗闪长岩(体)具富硅、富钾、准铝质-过铝质等特征,属于高钾钙碱性花岗岩;岩石的微量元素地球化学分析显示,富集大离子亲石元素(如Rb、Th、K、U),亏损高场强元素(如Nb、Ta、Ti),在稀土配分图上呈现轻稀土元素富集、重稀土元素亏损的右倾曲线特征;岩石构造环境判别图解反映曲乃亥花岗闪长岩(体)为Ⅰ型花岗岩,属于俯冲环境下活动大陆边缘构造作用所形成的产物,其可能主要来自于地壳物质的部分熔融。  相似文献   

13.
REE distributions of an unusual suite of mantle-derived amphibole/apatite rich xenoliths have very steep, LREE-enriched chondrite-normalised patterns with no Eu anomalies. These are closely analogous to REE distributions of carbonatitic and kimberlitic rocks. A wide range in absolute abundances of REE reflects the varied mineral assemblages of this xenolith suite and, together with other trace element and volatile concentrations, supports an origin by fractionation of, or separation from, a volatile-charged LIL-enriched (possibly kimberlitic/carbonatitic) magma. Such a magma could be a medium for volatile transfer, addition of Ti, V, K and P, and LREE enrichment within the upper mantle. It is postulated that such metasomatism in the upper mantle is a necessary precursor to continental alkaline volcanism.Geochemical modelling based on REE suggests that a pyrolite source +0.35% apatite (total of 0.5% apatite), with amphibole accounting for all K2O, can yield basanitic liquids with approximately 1–10% partial melting if the source is LREE-enriched (La about 20 times chondrite and Yb about 4.5–5 times chondrite).REE and trace element contents of the host rocks indicate that little exchange of these elements has occurred between xenolith and host magma during transport and emplacement.  相似文献   

14.
对冈底斯中部地区二云母花岗岩和花岗闪长岩进行了LA-ICP-MS锆石U-Pb定年、主量元素、微量元素和锆石Hf同位素组成的测定.结果表明, 二云母花岗岩的岩浆结晶年龄为(205± 1)Ma, 岩石属于强过铝质花岗岩, A/CNK= 1.16~ 1.20, K2O/Na2O= 1.67~ 1.95.岩石富Rb、Th和U等元素, Eu/Eu* = 0.29~ 0.41, (La/Yb)N= 22.62~ 35.08.锆石εHf(t)= -12.4~ -1.8.二云母花岗岩的岩浆产生于地壳中泥质岩类在无外来流体加入的情况下云母类矿物脱水反应所诱发的部分熔融作用, 其岩石形成机制类似于喜马拉雅新生代淡色花岗岩.花岗闪长岩的岩浆结晶年龄为(202± 1)Ma, 岩石属于准铝质(A/CNK= 0.96~ 0.98), K2O/Na2O= 1.42~ 1.77, Eu/Eu* = 0.54~ 0.65, (La/Yb)N= 6.76~ 13.35.锆石εHf(t)= -8.2~ -5.5.根据花岗闪长岩的地球化学特征和锆石Hf同位素组成, 花岗闪长岩的岩浆来自于地壳中基性岩类的部分熔融.冈底斯印支晚期强过铝质花岗岩的确定, 表明了冈底斯在印支晚期以前曾发生地壳的缩短与加厚作用, 从而进一步明确了冈底斯印支早期的造山事件及冈底斯经历了多期造山作用的演化.   相似文献   

15.
Titanite occurs as an accessory phase in a variety of igneous rocks, and is known to concentrate geologically important elements such as U, Th, rare earth element (REE), Y and Nb. The differences in the abundances of the REEs contained in titanite from granitoid rocks could reflect its response to changes in petrogenetic variables such as temperature of crystallization, pressure, composition, etc. Widespread migmatization in the granodiorite gneisses occurring to the east of Kolar and Ramagiri schist belts of the eastern Dharwar craton resulted in the enrichment of the REEs in titanite relative to their respective host rocks. A compositional influence on the partitioning of REEs between titanite and the host rock/magma is also noticed. The relative enrichment of REEs in titanite from quartz monzodiorite is lower than that found in the granodioritic gneiss. Depletion of REE and HFSE (high field-strength elements) abundances in granitic magmas that have equilibrated with titanite during fractional crystallization or partial melting has been modelled. As little as 1% of titanite present in residual phases during partial melting or in residual melts during fractional crystallization can significantly lower the abundances of trace elements such as Nb, Y, Zr and REE which implies the significance of this accessory mineral as a controlling factor in trace element distribution in granitoid rocks. Sm–Nd isotope studies on titanite, hornblende and whole rock yield isochron ages comparable to the precise U–Pb titanite ages, invoking the usefulness of Sm–Nd isochron ages involving minerals like titanite.  相似文献   

16.
In the Lachlan Fold Belt of southeastern Australia, Upper Devonian A-type granite suites were emplaced after the Lower Devonian I-type granites of the Bega Batholith. Individual plutons of two A-type suites are homogeneous and the granites are characterized by late interstitial annite. Chemically they are distinguished from I-type granites with similar SiO2 contents of the Bega Batholith, by higher abundances of large highly charged cations such as Nb, Ga, Y, and the REE and lower Al, Mg and Ca: high Ga/Al is diagnostic. These A-type suites are metaluminous, but peralkaline and peraluminous A-type granites also occur in Australia and elsewhere. Partial melting of felsic granulite is the preferred genetic model. This source rock is the residue remaining in the lower crust after production of a previous granite. High temperature, vapour-absent melting of the granulitic source generates a low viscosity, relatively anhydrous melt containing F and possibly Cl. The framework structure of this melt is considerably distorted by the presence of these dissolved halides allowing the large highly charged cations to form stable high co-ordination structures. The high concentration of Zr and probably other elements such as the REE in peralkaline or near peralkaline A-type melts is a result of the counter ion effect where excess alkali cations stabilize structures in the melt such as alkali-zircono-silicates. The melt structure determines the trace element composition of the granite. Separation of a fluid phase from an A-type magma results in destabilization of co-ordination complexes and in the formation of rare-metal deposits commonly associated with fluorite. At this stage the role of Cl in metal transport is considered more important than F.  相似文献   

17.
欧阳学财  狄永军  张达  徐洋  杨秋  王守营  陈杰  杜斌 《地质通报》2016,35(11):1869-1883
通过对东乡铜矿花岗斑岩进行岩石地球化学特征、锆石U-Pb定年研究,探讨其岩石成因、构造环境、形成时代与成矿的关系。东乡花岗斑岩的LA-ICP-MS锆石U-Pb年龄为156.4±1.5~161±1.0Ma。该岩体为高钾钙碱性系列,轻稀土元素富集,重稀土元素较亏损,具有明显的负Eu异常。微量元素富集大离子亲石元素,而亏损高场强元素。地球化学特征表明,东乡岩体形成于碰撞构造环境,岩浆来源于地幔,但形成演化期间经历了地壳物质的同化混染。该区矿石与花岗斑岩的稀土元素配分曲线存在一定的相似性,且成矿时间与岩浆侵入时间相近,表明岩浆侵入对东乡铜矿床的形成具有重要贡献。  相似文献   

18.
通过对内蒙古锡林浩特毛登牧场早石炭世花岗岩体进行野外观察、LA ICP MS锆石U Pb测年以及地球化学测试,讨论其构造环境,进一步为研究古亚洲洋闭合时限提供依据。测年结果表明:花岗闪长岩为(3306±18) Ma,二长花岗岩为(3277±26) Ma,成岩时代为早石炭世。岩石地球化学分析表明:花岗闪长岩为强过铝质、钙碱性系列岩石,具有活动大陆边缘的亲缘性特征。微量元素特征指示花岗闪长岩具有典型下地壳来源特征并伴有部分幔源岩浆混合作用,为弧岩浆岩。二长花岗岩为具高硅、富碱、相对低铝特征的高钾钙碱性系列岩石。两类差异明显的岩石稀土配分曲线表明二长花岗岩具有下地壳岩浆重熔的演化特征。微量元素特征指示样品为大陆弧环境下壳源重熔的成熟弧花岗岩。构造判别图显示花岗闪长岩为代表活动大陆边缘环境的I型花岗岩,而二长花岗岩则为指示活动大陆边缘弧后伸展环境的A2型花岗岩,二者构成I-A型复合岩体,说明研究区在早石炭世仍存在古亚洲洋向西伯利亚板块的俯冲作用,推测古亚洲洋此时尚未闭合。  相似文献   

19.
Kent C. Condie 《Earth》1976,12(4):393-417
Progressive alteration, diagenesis, and low-grade metamorphism of Archean greenstone belts often leads to redistribution of alkali and related trace elements. Transition metals and rare earths are relatively resistant to these processes and hence are most useful in evaluating petrologic problems.Depleted Archean tholeiite (DAT) exhibits flat REE distributions and low LIL-element contents while enriched Archean tholeiite (EAT) exhibits slightly enriched REE patterns and moderate LIL-element contents. DAT is grossly similar to modern rise and are tholeiites and EAT to cale-alkaline and oceanic island tholeiites. Archean and esites fall into three categories: depleted Archean andesite (DAA) exhibits flat REE patterns, negative Eu anomalies and low LIL-element contents; low-alkali Archean andesite (LAA) shows minor light REE enrichment and low LIL-element contents; and high-alkali Archean andesite (HAA) shows light REE enrichment and high LIL-element contents. LAA is grossly similar to modern cale-alkaline andesites, but DAA and HAA do not have modern analogues. Archean depleted siliceous volcanics (DSV) exhibit depletion in heavy REE and Y compared to modern siliceous volcanics whereas undepleted varieties (USV) are similar to modern ones. Almost all Archean volcanic rocks, regardless of composition, are enriched in transition metals compared to modern varieties. Archean graywackes are similar in composition to Phanerozoic graywackes. Rock associations in Archean greenstones suggest the existence of two tectonic settings.Magma model studies indicate that partial melting has left the strongest imprint on trace-element distributions in greenstone volcanics. Three magma source rocks are necessary (listed in order of decreasing importance): ultramafic rock, eclogite, and siliceous granulite. Trace-element studies of Archean graywackes indicate a mixed volcanic—granitic provenance with minor ultramafic contributions.Alkali and related trace-element contents of Archean volcanics have been interpreted in terms of both undepleted and depleted upper mantle sources. Preferential enrichment of transition metals in Archean volcanics may have resulted from upward movement of immiscible liquid sulfide droplets with Archean magmas, depleting the source area in these elements. Initial Sr isotope distributions in Archean volcanics indicate the upper mantle during the Archean was heterogeneous in terms of its Rb/Sr ratio.  相似文献   

20.
东昆仑得尔龙地区花岗岩体侵位于二叠纪—三叠纪早期,岩石类型为黑云母花岗闪长岩、黑云母二长花岗岩、二云母二长花岗岩。早期次的黑云母花岗闪长岩中含有暗色的镁铁质矿物包体。SiO2含量为65.04%~73.47%,全碱含量为5.29%~8.52%,K2 O/Na2 O 平均值为0.70,Al2 O3平均为14.79%;亏损高场强元素 Ta, Nb;∑REE平均为142.9×106,轻稀土元素相对富集,(La/Yb)N 平均为17.15,δEu 平均为0.71,表现为弱亏损。研究表明得尔龙地区花岗岩属次铝过铝(高钾)钙碱性 S 型花岗岩,形成于后造山环境;岩浆源区的物质是多源的,主要为地壳物质的重熔,其次为幔源岩浆的底侵。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号