首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
南海北部陆坡海域是孤立内波的活跃区,孤立内波在该海域能够引起水体环境较强烈的水平不均匀性,从而影响声场干涉结构。将描述宽带声信号强度干涉条纹斜率的波导不变量视为一种分布,能更准确地分析声场的距离*频率干涉结构。本文研究了孤立内波环境下过渡海域声场的距离*频率干涉结构,依据实测孤立内波海洋环境,得到孤立内波环境下随距离变化的声速剖面,利用抛物方程方法仿真过渡海域声场干涉结构。在此基础上,利用拉东变换和傅里叶变换结合的谱值分离方法在低信噪比环境下提取波导不变量分布。分析表明孤立内波环境下过渡海域的声场类影区、类会聚区的波导不变量取值更丰富。  相似文献   

2.
The role of bottom friction in the runup of nonbreaking long waves on the shore is analyzed. The case of the normal incidence of monochromatic waves is considered. The relief of the model region consists of an even horizontal bottom area conjugated with a flat slope. The energy dissipation is estimated as the work of bottom friction forces over the wave field obtained using the known analytical solution based on the Carrier-Greenspan transforms. Estimates of energy losses for waves whose periods are typical for tsunami waves have been obtained. The energy dissipation is shown to be not concentrated in the shore line area as a rule. The question about the practicability of using partially reflecting boundary conditions on the coast to take into account the bottom friction in large-scale models of tsunami propagation is considered.  相似文献   

3.
Determinations of acoustic scattering strength for sand bottoms have been made at several different shallow-water areas under downward refracting sound propagation conditions in the frequency decade below 1 kHz. The measurements have been made using explosive sources detonated at mid-water depth and bottom-mounted vertical and horizontal hydrophone line arrays as receivers. The ubiquitous presence of multipaths in shallow water prevents a direct-path scattering geometry, and scattering strength must be extracted from the full reverberation field, which complicates the determination of bottom grazing angle dependence of scattering. The major focus of this paper has been the variation of scattering strength with frequency (integrated over participating bottom angles), though estimates of the angular dependence of scattering strength have been made using the vertical receiving array. Typically the integrated scattering strength for sand bottoms reported (and elsewhere) are found to decrease below 1 kHz and in some instances to exhibit a minimum in the several hundred hertz range. Sand bottom scattering strengths below 1 kHz are significantly lower than those predicted by the Mackenzie formula and the limited angular dependence determinations have been found to be consistent with Lambert's law  相似文献   

4.
We study the problem of determination of the sound field of a point harmonic source in the coastal zone and the influence of a cylindrical body floating above the source on the sound field formed in the marine medium. A numerical-analytic method is proposed for the determination of the velocity potential. According to this method, the unknown coefficients in the general solution of the problem are determined from the corresponding infinite system of linear algebraic equations by the method of reduction. We present results of numerical calculations for a special case of a waveguide whose parameters are typical of the coastal part of the sea and perform the comparative analysis of the data obtained as a result of variation of the indicated parameters.  相似文献   

5.
A wave theory of propagation of an acoustic pulse in a moving stratified atmospheric layer above the ground with a finite impedance of an underlying ground surface is developed. The shapes of acoustic signals in a near-ground atmospheric waveguide, which are formed due to temperature inversion and a vertical shear of the wind velocity, are calculated based on this theory. These signals are compared with those measured during the experiments where vertical profiles of the wind velocity and temperature in an atmospheric boundary layer have been continuously controlled using a sodar, a temperature profile meter, and acoustic anemometers or thermometers mounted on a 56-meter-high mast. The joint action of a near-ground acoustic waveguide, the impedance of the underlying surface, and a vertical layered structure of the boundary atmospheric layer on a signal shape far from the acoustic source are studied.  相似文献   

6.
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率、声源深度和掠射角等因素确定的情况下,分析北大西洋冬季(1-3月)声道轴深度、最小声速值、表层声速值的分布,通过仿真计算研究选用位置点5 m深度声源的声传播规律:反转深度随纬度升高而降低,低纬度海岭东西两侧差别不大,15°N以北为西侧大于东侧。55°N以南海区可形成汇聚区波导,海岭西侧的汇聚区跨度大于海岭东侧,有混合层时还存在一定强度的表面波导,汇聚区处5 m、100 m和250 m接收深度上的传播损失差异较小,增益为7~19 dB,55°N以北海区则为有焦散结构的表面波导。以北大西洋35°N为界,以南以汇聚区波导探测有利,以北以表面波导探测有利。  相似文献   

7.
内孤立波具有振幅尺度大、能量集中的特点,其引起流场和密度场的迅速变化可能对海洋工程结构物以及水下潜体造成严重威胁.因此研究不同造波条件下生成的内孤立波运动的流场特征具有重要的学术意义和实际应用价值.采用直接数值模拟方法和给定的初始密度场密度跃迁函数,对重力塌陷激发内孤立波的运动过程进行研究,探讨了不同造波条件下,激发产...  相似文献   

8.
以分析季节对大西洋声传播的影响为研究目的,应用WOA13季节平均数据和Mackenzie声速经验公式,分析了大西洋声道轴和表层声速值的四季分布情况,再利用BELLHOP水声学数值模型,在设定的声源频率1 000 Hz和掠射角15°~-15°情况下,仿真计算选用位置点5 m深度声源的四季声传播情况,研究结果表明:按照实际的季节,大西洋会聚区波导的反转深度,冬季最小,春季增大,夏季最大,秋季再减小.在中低纬度的典型声速剖面下,夏季会聚区跨度最大,秋季和冬季递减,春季最小,第一会聚区的四季跨度差在1 km内.在高纬度的正梯度声速剖面下,夏季声传播距离最远,秋季减小,冬季最近,春季增大,且传播距离的差别较大.各变化规律均以四季循环更替的形式出现.  相似文献   

9.
海洋中声速起伏导致水声信道发生变化,进而引起声线到达结构的变化,对水声传播及定位精度产生一定影响。为讨论这一效应,基于TDOA体制建立了考虑声线弯曲的水下目标无源定位模型,分析了声速起伏对水下声传播路径及传播时间的影响,进而研究了声速起伏对水下无源定位测量精度影响程度。结果表明:当水平传播距离较大时,声速剖面起伏对声传播路径及传播时间的影响更为显著;以典型四元阵为例,若基线长度为20 km,接收阵位于水下5 km处,在不考虑其它随机误差影响下,海洋声速起伏造成的声源定位误差量级在0.5 m以内。分析结果有助于更好地利用环境特征优化无源定位测量方案,可为高精度水下无源定位系统设计及精度评估提供依据。  相似文献   

10.
High-frequency propagation close to an active surf line is explored with 12and 100-kHz propagation paths together with measurements of bubble clouds, bubble size distributions, and waves. Breaking waves inject massive bubble plumes that are mixed downwards from the roller region by intense turbulence. If these injections follow one another at intervals less than the time taken for the bubbles to rise to the surface, acoustic signals will be continuously blocked, forming an acoustical barrier that effectively inhibits any propagation. Occasionally, waves break seaward of this barrier. In this case, dense bubble clouds are mixed down beneath the air entrainment zone, but there is sufficient time for them to disappear before succeeding breakers, allowing intermittent high-frequency propagation recharge the bubble field. The duration and shape of signal dropouts are then determined by the selective removal of bubbles by buoyancy and dissolution. In addition to turbulence created by the air entrainment process, a lower level of continuous background turbulence may be generated by interaction of residual currents with the wave boundary layer. Our observations illustrate the variable character of acoustic blocking by bubble clouds and serve as a basis for quantitative analysis of these effects with a 2D propagation model coupled to 2D models of bubble cloud evolution and background turbulence  相似文献   

11.
The boundary integral element method based on Green's formula is applied to the analysis of transient flow problem in corrugated bottom tanks. The problem is formulated as a two-dimensional linear, initial boundary value problem in terms of a velocity potential. The Laplace equation and the boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by the application of Green's formula. Finite Difference discretization is applied timewise. Initially a triangular wave on the free surface is assumed to be formed. The height of the triangular corrugated bottom is varied between 1/10 and 1/5 of the tank depth. The form of the free surface and the equipotential lines for the flow in the tank are presented at different time steps. An accuracy analysis is performed and distortion in time is considered. Proper coefficients for solutions are derived and presented. The results show that utilization of triangular corrugated bottoms may help to regulate the flow in tanks.  相似文献   

12.
Mathematical modelling techniques are applied to study the influence of the seasonal pycnocline on the propagation and attenuation of internal waves in an ocean with a main pycnocline. This paper discusses the peculiarities of dispersive dependences, group velocities, and of the velocity field's amplitudinal characteristics induced by the seasonal pycnocline. Short-period motions have been observed to concentrate within the latter, and the conditions causing a modification of the environment's waveguide properties for non-stationary wave packets, associated with the existence of two pycnoclines, have been identified.Translated by Vladimir A. Puchkin.  相似文献   

13.
低盐透镜现象是珠江口陆架海域常见的一种中尺度现象,它的出现会影响水下声传播环境。利用南海北部陆架区的CTD资料分析了低盐透镜的结构特征,基于简正波和射线模型,建立二维波导环境,设置不同声源条件,对低盐透镜环境的声传播特性进行了研究。结果表明:低盐透镜会在海水上层形成声道,距离15 km处其传播损失较没有低盐透镜的情况小约15 dB。虽然低盐透镜声道厚度通常较小,但是较大的盐度梯度可以保证声道对声能的有效传播。当频率高于截止频率的声源置于低盐透镜内,声道效应有助于声音的远距离传播。  相似文献   

14.
Several anomalous phenomena related to the measurement of storm microseisms in northwestern Europe and on Greenland have been considered. It has been indicated that these phenomena can be explained by analyzing the microseism propagation in oceanic waveguides in the regions of abyssal plains and transformation on continental slopes of different steepness. A model of the oceanic waveguide with an inclined elastic bottom has been presented. An analysis of the family of dispersion dependences for such a model makes it possible to find an explanation for the specific features of microseism field transformation at the ocean-continent boundary into Rayleigh waves propagating on the land.  相似文献   

15.
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率等因素确定的情况下,分10 m表面声源和250 m水下声源,分析北大西洋冬季东、西部海区的声波导情况。在给出不同海区位置的声速场和声波导具体信息的基础上,研究其规律:最小声速值和声道轴深度由直布罗陀海峡向外递减扩散,表层声速值和声速梯度由南向北递减,声跃层存在于低纬度海区,混合层在低纬度通常在100 m以内,在高纬度增加至100 m以上。10 m深度表面声源的汇聚区反转深度随纬度增加逐渐减少,西部海区深于东部海区;西部海区的汇聚区跨度大于东部海区,东西部跨度最大值出现在25°N和15°N,传播损失基本一致。250 m水下声源的汇聚区反转深度浅于10 m深度表面声源时,同样是西部海区大于东部海区,汇聚区跨度呈低-高-低规律,东西部跨度最大值出现在35°N和25°N;东部海区25°N以南、西部海区15°N以南,不同接收深度上的传播损失差异较大,以北差异较小。同时简要叙述了声影区对目标探测的影响。  相似文献   

16.
The results of experiments on the physical modeling of long-range infrasonic propagation in the atmosphere are given. Such modeling is based on the possible coincidence between the forms of the vertical profiles of the effective sound speed stratification in the atmospheric boundary layer (between 0 and 600 m for the case under consideration) and in the atmosphere as a whole (from the land surface up to thermospheric heights (about 150 km)). The source of acoustic pulses was an oscillator of detonation type. Owing to the detonation of a gas mixture of air (or oxygen) and propane, this generator was capable of producing short, powerful (the maximum acoustic pressure was on the order of 30 to 60 Pa at a distance of 50 to 100 m from the oscillator), and sufficiently stable acoustic pulses with a spectral maximum at frequencies of 40 to 60 Hz and a pulsing period of 20 to 30 s. The sites of acoustic-signal recording were located at different distances (up to 6.5 km) from the source and in different azimuthal directions. The temperature and wind stratifications were monitored in real time during the experiments with an acoustic locator—a sodar—and a temperature profiler. The data on the physical modeling of long-range sound propagation in the atmosphere are analyzed to verify the physical and mathematical models of predicting acoustic fields in the inhomogeneous moving atmosphere on the basis of the parabolic equation and the method of normal waves. A satisfactory agreement between calculated and experimental data is obtained. One more task was to compare the theoretical relations between variations in the azimuths and angles of tilting of sound rays about the horizon and the parameters of anisotropic turbulence in the lower troposphere and stratosphere with the experimental data. A theoretical interpretation of the experimental results is proposed on the basis of the theory of anisotropic turbulence in the atmosphere. The theoretical and experimental results are compared, and a satisfactory agreement between these results is noted.  相似文献   

17.
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.  相似文献   

18.
Water depth variations in marine reflection seismic profiling cause velocity push-down and, in regions of rapid fluctuations of the water-bottom slope, stack degradation. Static corrections are a very satisfactory and practical solution to these problems under typical survey conditions with water depths not exceeding a few hundred metres and relatively hard water bottoms. Static time shifts are best derived from a refraction analysis of first arrivals rather than from fathometer data, especially over underwater valleys where unconsolidated sediment of velocity close to that of water has been deposited unconformably onto the underlying lithified rocks. These points are illustrated by a field example from the GLIMPCE survey in Lake Superior. The availability of computer-effective algorithms such as the generalized linear inversion method allows the implementation of refraction statics during the initial processing of regional marine crustal surveys.LITHOPROBE Publication No. 263.  相似文献   

19.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

20.
Distributions of the parameters of sedimentary grain sizes and their correlations were studied to trace the sources of silts and their movement trends in the Zhujiang River Estuary based on the analyses of grain sizes from more than 1080 sedimentary samples. The distributions of the median diameter, public value, quartile deviation, and skewness of sediments were complex in the Zhuiiang River Estuary mainly because of the impact of the matter source regions, distances from the source regions, and hydrodynamic conditions, such as waves, tidal currents, and coastal currents. Analyses of the parameters of the grain sizes for the various types of sediments showed that the distributions of the surface sediments in the Zhujiang River Estuary were controlled by many factors. Their matter sources were mainly the sediments discharged from the runoffs and ebb tidal currents, and from the open sea. The sediments mainly moved by suspension movement. The silts formed a large area of sediments with suspended fine silts in the Zhujiang River Estuary by internal adjustment transportation in the area, and moved toward the western coast of the Zhujiang River Estuary under the effect of Coriolis forces and coastal currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号