首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The hydraulic conductivity plays a major role on the excess pore pressure generation during monotonic and cyclic loading of granular soils with fines. This paper aims to determine how much the hydraulic conductivity and pore pressure response of the sand-silt mixtures are affected by the percentage of fines and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests performed on samples reconstituted from Chlef River sand with 0, 10, 20, 30, 40, and 50% nonplastic silt at an effective confining stress of 100 kPa and two relative densities (Dr = 20, and 91%) are presented and discussed. It was found that the pore pressure increases linearly with the increase of the fines content and logarithmically with the increase of the intergranular void ratio. The results obtained from this study reveal that the saturated hydraulic conductivity (k) of the sand mixed with 50% low plastic fines can be, on average, four orders of magnitude smaller than that of the clean sand. The results show also that the hydraulic conductivity decreases hyperbolically with the increase of the fines content and the intergranular void ratio.  相似文献   

2.
From this research, overconsolidated undrained and drained behaviors of specimens with high sand content were highly dilatant. According to the comparison results of laboratory tests, the deviator stresses of silty sand were greater than sandy silt due to high sand content under increasing OCRs, and both silty sand and sandy silt were presented strain softening tendency after failure under undrained loading. The pore water pressure increased with increasing fines content under increasing OCRs. Silty sand exhibited more dilatancy and increasing shear strength than sandy silt because pore water pressures of silty sand were lower than sandy silt under higher OCRs. In overconsolidated drained tests, silty sand is higher strength than sandy silt because silty sand has a lower volumetric strain and higher deviator stress than sandy silt under increasing OCRs. As the degree of overconsolidation increased, similar behaviors of silty sand and sandy silt observed that volumetric strain decreased to negative values due to dilatancy effect and low-cohesion under current effective confining pressures.  相似文献   

3.
A stress path with continuous rotation of the principal stress direction and continuous alteration of amplitude of deviatoric stress difference under the interaction of wave and earthquake loading was proposed based on the characteristics of the stress path under wave and earthquake loading, respectively. Using a GDS dynamic hollow cylinder apparatus, a series of cyclic triaxial-torsional coupling shear tests were performed on Nanjing saturated fine sand via the stress path mentioned previously under different relative densities, effective initial confining pressures, plastic fines contents, and loading frequencies to study the development of excess pore water pressure (EPWP) of saturated sand under the interaction of wave and earthquake loading. It was found that the development of EPWP follows the trend of fast-steady-mutative-drastic, which is different from that under the cyclic triaxial test or wave loading. The number of cycles causing initial liquefaction (NL) of saturated sand increases remarkably with relative densities. However, the relationships between NL and effective initial confining pressures, plastic fines content, or loading frequencies are more complex.  相似文献   

4.
A series of undrained monotonic triaxial compression tests were performed on natural, medium-dense (relative density (RD) = 50%) Chlef sand containing 0.5% of non-plastic fines, under different confining pressures of 50 kPa, 100 kPa, and 200 kPa. This article focuses on distinctive states of the monotonic undrained response of sands, namely the critical state, the phase transformation state, the quasi-steady state, and the state of undrained instability (onset of flow liquefaction). Specimens were prepared using dry funnel pluviation and wet deposition to investigate the effect of the initial sand fabric on these states. The present data suggest that the initial fabric of the sand appears to have a significant effect on the undrained behavior in the early stages of shearing, with its influence vanishing at large strains. Wet deposition specimens demonstrate considerably larger undrained instability state strength than their dry funnel pluviation counterparts, and a unique critical state locus is reached by both dry funnel pluviation and wet deposition.  相似文献   

5.
Abstract

This study aims to evaluate the relationship between saturated hydraulic conductivity with particle shape and packing density characteristics of silty sand soils. The article presents a series of hydraulics tests performed on three kinds of sand with different particles shapes (Chlef rounded sand, Fontainebleau sub-rounded sand and Hostun sub-angular sand) mixed with low plastic rounded Chlef silt in the range of 0–30% fines content. The sand–silt mixture samples were tested in the constant-head permeability device at a loose relative density (Dr = 18%) and a constant room temperature (T?=?20?°C). The obtained results indicate that the measured saturated hydraulic conductivity (Ks) correlates very well with the fines content (Fc), packing density in terms of [maximum void ratio “emax,” minimum void ratio “emin,” predicted maximum void ratio “emaxpr and predicted minimum void ratio “eminpr] and particle shape characteristics ratios in terms of roundness ratio (Rr = Rhs/Rmixture) and sphericity ratio (Sr = Shs/Smixture) of the silty sand materials under consideration. Moreover, the analysis of the available data show a noticeable success in exploring the prediction of the saturated hydraulic conductivity (Ks) based on the particle shape and packing density characteristics (Rr, Sr, emax, and emin) of the studied sand–silt mixture samples.  相似文献   

6.
Abstract

The study of the unsaturated soils is a very complex field to which several researches in laboratory and on site are directed these last years. An experimental study aims to quantify the influence of the Skempton coefficient B characterizing the degree of saturation on the behavior of the granular sand to the liquefaction resistance of sand. The study is based on undrained triaxial tests performed on natural Chlef sand carried out at an initial relative density Dr = 50% under a confining pressure of 50, 100 and 200?kPa for Skempton coefficient B?=?10 to 92%. The results of the tests show that an increase of confining pressure leads to an increase of the shear stress of the samples. For the lower value of the degree of saturation results of our findings indicate an increase of the resistance to liquefaction; our results are in good agreement with others observed in several research projects conducted with other sands. The increase of Skempton coefficient B induces an increase of pore water pressure and a decrease of the shear strength. The pore pressure (u) increases with an exponential manner with the increase of the degree of saturation; while the residual shear strength (Rs) decreases with logarithmic manner with the increase of degree of saturation (B).  相似文献   

7.
Cyclic vertical-torsional coupling tests were performed on saturated Nanjing fine sand with a relative density of 50% using a hollow cylinder apparatus. The effect of complex initial stress conditions on undrained dynamic strength of saturated Nanjing fine sand was investigated. It is shown that the initial confining pressure, p0, the initial stress ratio, R0, and the initial angle of maximum principal stress direction, α0, have great effects on the characteristics of the dynamic strength of Nanjing fine sand. The dynamic strength increases with p0 and R0, while it decreases with α0. The effect of initial intermediate principal stress parameter b0 on the dynamic strength is slight.  相似文献   

8.
This article presents a case history of the performance of a full-scale test embankment constructed on a marine soft clay deposit improved by prefabricated vertical drains (PVDs) in the east of China. For analyzing the subsoil behavior, a 2D FEM model is established, in which the PVD-improved effect is considered by a simplified method of equivalent vertical hydraulic conductivity. The calculated results can predict the settlement behavior well; however, the FEM gives an underestimate for the value of excess pore pressures and it predicts similar values for the dissipation rate of excess pore pressures. The measured undrained shear strength of subsoil, Cu, is compared with the predicted value based on Ladd’s empirical equation and the Modified Cam-Clay model (MCC). The shear strength predicted by Ladd’s equation agrees well with the measured value, whereas the MCC overestimates the ability to improve subsoil shear strength during consolidation. The undrained shear strength of subsoil, Cu, increased as the construction progressed, and the shear strength incremental ratio, ΔCup′, decreased slightly with the degree of consolidation, U.  相似文献   

9.
未胶结钙质砂静力和循环强度的单剪试验研究   总被引:1,自引:1,他引:0  
王晓丽  裴会敏  王栋 《海洋工程》2018,36(6):124-129
通过等体积的单调和循环单剪试验研究南海未胶结钙质砂的静、动力反应,讨论应力水平和相对密实度对钙质砂静、动力强度的影响,并与典型的石英砂性质进行比较。在单调单剪试验中,中密和密实钙质砂在100~400 k Pa范围的初始竖向应力下都表现出应变硬化的性质,有效内摩擦角随剪应变增大。在循环单剪试验中,钙质砂的反应与相对密实度和初始竖向应力密切相关,但中密和密实钙质砂中的等效孔压都能达到初始竖向应力的85%~90%,此时剪应变突增,试样发生破坏。与相近密实度的石英砂相比,钙质砂抵抗液化的能力更强。提出了南海钙质砂动强度的归一化表达式,建立了不排水静强度、不排水动强度和循环次数之间的关系。  相似文献   

10.
In order to study pore water response and static liquefaction characteristics of silty sand, which has previously experienced liquefaction, two series of monotonic triaxial tests were run on medium dense sand specimens (RD = 50%) at confining pressure of 100 kPa. In the first test series, the influence of the soil saturation under undrained static loading has been studied. It summarizes results of monotonic tests performed on Chlef sand at various values of the Skempton's pore pressure coefficient. Analysis of experimental results gives valuable insights on the effect of soil saturation on sand response to undrained monotonic paths. In the second series of tests, the overconsolidation influence on the resistance to the sands liquefaction has been realized on samples at various values of overconsolidation ratios (OCR). It was found that the increase of overconsolidation ratio (OCR) increases the resistance of sands to liquefaction.  相似文献   

11.
The post-cyclic behavior of biogenic carbonate sand was evaluated using cyclic triaxial testing through a stress control method under different confining pressures between 50 to 600 kPa. The testing program included a series of isotropically and anisotropically consolidated, undrained triaxial compression and extension tests on samples of remolded calcareous Bushehr sand. Grading analyses (before and after each test) were used to examine the influence of particle breakage on post-cyclic behavior of Bushehr sand. The particle breakage commonly occurred in these soils even in lower values of confining pressure, yet there was not a clear correlation between the post-cyclic responses and particle breakage. Based on the present study, a concept is suggested for post-cyclic behavior of carbonate sand. It was observed that post-cyclic strength has a good correlation with cyclic stress ratio, type of consolidation, and value of residual cyclic strain. For all specimens, it is clear that the post-cyclic strength is greater than monotonic strength, irrespective of confining pressure and relative density.  相似文献   

12.
饱和粉土在低围压下剪切特性的试验研究   总被引:1,自引:0,他引:1  
章伟  林霖  冯秀丽  董攀 《海洋科学》2006,30(8):94-97
通过室内静三轴试验,对黄河水下三角洲埕岛海域沉积物———粉土的剪切特性进行了研究。比较了粉土在低围压和高围压下的剪切变形特性和强度特性。试验结果表明,粉土在低围压(10,20,30,40 kPa)下的应力应变曲线和高围压下的应力应变曲线总体趋势基本一致,但在不同围压下其抗剪强度存在差别。  相似文献   

13.
ABSTRACT

This article presents a testing study on the strain-rate effects on the stress--strain behavior of natural, undisturbed Hong Kong marine deposits (HKMD) from three Hong Kong locations, including a one-dimensional (1-D) compressibility in a confined condition, and undrained shear strengths in triaxial compression and extension modes. The influences of the strain rates on the one-dimensional compressibility are studied by means of constant rate of strain (CRS) tests and multistage loading oedometer (MSL) tests, and those on the undrained shear strengths are studied by K o-consolidated undrained compression and extension tests with step-changed axial strain rates (CK oUC and CK oUE tests), and with both step-changed axial strain rates and relaxation processes (CK oUCR and CK oUER tests). The strain-rate effects on the stress--strain behavior are generally examined by “apparent” preconsolidation pressures in the 1-D compressions and undrained shear strengths in the triaxial compression and extension stress states. The stress--strain behavior of the natural, undisturbed HKMD exhibits considerable viscous characteristics. In the CRS and MSL tests at a given strain, the higher the strain rate, the higher the effective stress, the higher the porewater pressure. In the undrained shearing tests, the higher the strain rate, the higher the undrained shear strength, but the lower the porewater pressure. For the CK oUC and CK oUE tests on the Tsing Yi site samples, the undrained shear strength increases by 8.5% and 12.1% for one order increment of axial strain rate of 0.2%/hr (i.e., ρ0.2) for the compression and extension modes respectively. For the CK oUCR and CK o tests on the Tung Chung site samples of different compositions, average ρ0.2 is increased by 6.2% for the compression and 9.5% for the extension, but by 18.8% for the extension on a higher plastic sample. The present study shows that the strain-rate effects on the stress--strain behavior of the undisturbed HKMD are larger for specimens in extension than those in compression.  相似文献   

14.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

15.
The Huanghe River(Yellow River) Delta has a wide distribution of fine-grained soils. Fluvial alluviation, erosion,and wave loads affect the shoal area, resulting complex physical and mechanical properties to sensitive fine-grained soil located at the river-sea boundary. The cone penetration test(CPT) is a convenient and effective in situ testing method which can accurately identify various soil parameters. Studies on undrained shear strength only roughly determine the fine content(FC) without ma...  相似文献   

16.
Abstract

Construction of the reefs in the South China Sea is a significant foundation to the secure stability and economic development of China. The construction of an airport runway is necessary for this realization. The calcareous sand is the main primary material in the runway construction. A certain type of calcareous sand near a certain reef of the South China Sea was studied in this paper. To investigate this specific calcareous sand, quartz sand was used as a reference for comparison. Microscopic 3-D imaging, compression and triaxial tests were conducted to test the micro, squeezing and shear properties. The effect mechanism of gradation on the calcareous sand’s compressibility and shear characteristics are discussed from a mesoscopic viewpoint using 3-D morphology. Calcareous sand particles are multiangular and flatter in comparison with quartz sand. The larger the particle sizes are, the more different the two sands’ morphologies are. The compressibility of calcareous sand is greater, and the effect of the coarse fraction (5–1?mm) content in the gradation plays the most significant role in this feature. When the coarse particles’ content is less than 25% and the mass ratio of the middle and fine particles (M) is constant, there is the worst coarse fraction content causing the calcareous sand to be most likely compressed. The worst coarse fraction content decreases with the increase in M, and an empirical formula is proposed. When the gradation, relative density and confining pressure are the same, the peak shear stress and strain of calcareous sand are all at a high level. The effect of confining pressure is manifested in calcareous sand. The shear strength and dilation of calcareous sand are also most affected by the medium coarse fraction (5–0.25?mm) content.  相似文献   

17.
18.
Beach sands located above the sea water level exist in an unsaturated, rather than a fully saturated or dry state. Within the unsaturated zone, a steep excavated surface can be sustained for some unknown but finite time, and some slopes may remain stable for extended time periods due to capillary forces. These observations clearly indicate small but nonzero values for attraction strength (tensile strength and cohesion) in unsaturated beach sands, especially apparent but not confined to settings where there are low stress levels. Thus, experiments were carried out to quantify the magnitude of attraction strength in moist sands (D r ?=?30%) and to examine the variation of these values as a function of moisture content and presence of a small amount of fines. Tensile strength, which is significantly different from zero, increases with increasing moisture content and fines. However, the influences of fines on the tensile strength are substantially dependent on the water content. Apparent cohesion strength is also identified in moist sands. A simple relationship between tensile strength and apparent cohesion is proposed using the obtained data. This study would help to further understand the phenomenon of stability of beach sands.  相似文献   

19.
A testing program was initiated to determine the stress-strain and strength behavior of two very different marine sands (a calcareous sediment from South Australia and a siliceous sediment from the United Kingdom) at elevated confining pressures. The testing matrix consisted of a series of isotropically consolidated, undrained (CIU) and drained (CID), triaxial compression tests on samples of naturally deposited calcareous and siliceous sediment and remolded calcareous sediment. It was found that the calcareous samples displayed little cemented behavior during shear. For tests conducted at pressures up to 1.5 MPa, a significant amount of particle crushing occurred in the calcareous samples but not in the siliceous samples. Particle degradation and reorientation facilitates transitions from dilative to contractive behavior with increases in confining stress. The calcareous sediment exhibited contractive behavior at confining pressures above approximately 500 kPa and the siliceous sediment remained dilative at stresses up to 1 MPa during undrained loading. Comparison with data collected by the University of Sydney (CID tests with confining pressures up to 60 MPa) showed that most of the variations in strength behavior occurred within the low stress range (up to 2 MPa) tests conducted at URI. This was evident in the friction angle data and in the reloading Young's modulus data.  相似文献   

20.
ABSTRACT

In this study, settling tests were conducted to investigate the sedimentation and self-weight consolidation behavior of seafloor sediments from Isahaya Bay, Ariake Sea, Japan. During the tests, the density variations with depth and time were measured by a gamma-ray transmission radioisotope densitometer. The test results show that the settling process of the seafloor sediments can be classified into the flocculation stage, settling stage, and consolidation stage. The settling rate of the seafloor sediments in the settling stage is dependent on the temperature and initial water content, while the settling rate in the consolidation stage is independent of the temperature and initial water content. The density profile changes from a constant density profile to a linear density profile when the sedimentation process transitions to the self-weight consolidation process. The relations between the void ratio (e) and effective vertical stress (p’) at very low pressures can be calculated from the measured density values, and this can be used for the analysis of the self-weight consolidation of seafloor sediments. For the seafloor sediments tested in this study, the undrained shear strength (su) values are almost the same when the density values are less than 1.14?g/cm3, and the su values increase linearly with an increase in density when the density values are in the range of 1.14–1.2?g/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号