首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is a study of the annual and interannual variability of regional rainfall produced by the Center for Weather Forecasts and Climate Studies/Center for Ocean, Land and Atmospheric Studies (CPTEC/COLA) atmospheric global climate model. An evaluation is made of a 9-member ensemble run of the model forced by observed global sea surface temperature (SST) anomalies for the 10-year period 1982–1991. The Brier skill score and, Relative Operating Characteristics (ROC) are used to assess the predictability of rainfall and to validate rainfall simulations, in several regions world wide. In general, the annual cycle of precipitation is well simulated by the model for several continental and oceanic regions in the tropics and mid latitudes. Interannual variability of rainfall during the peak rainy season is realistically simulated in Northeast Brazil, Amazonia, central Chile, and southern Argentina–Uruguay, Eastern Africa, and tropical Pacific regions, where the model shows good skill. Some regions, such as northwest Peru–Ecuador, and southern Brazil exhibit a realistic simulation of rainfall anomalies associated with extreme El Niño warming conditions, while in years with neutral or La Niña conditions, the agreement between observed and simulated rainfall anomalies is not always present. In the monsoon regions of the world and in southern Africa, even though the model reproduces the annual cycle of rainfall, the skill of the model is low for the simulation of the interannual variability. This is indicative of mechanisms other than the external SST forcing, such as the effect of land–surface moisture and snow feedbacks or the representation of sub-grid scale processes, indicating the important role of factors other than external boundary forcing. The model captures the well-known signatures of rainfall anomalies of El Niño in 1982–83 and 1986–87, indicating its sensitivity to strong external forcing. In normal years, internal climate variability can affect the predictability of climate in some regions, especially in monsoon areas of the world.  相似文献   

2.
The 2m temperature (T2m) and precipitation from five regional climate models (RCMs), which participated in the ENSEMBLES project and were integrated at a 25-km horizontal resolution, are compared with observed climatological data from 13 stations located in the Croatian coastal zone. The twentieth century climate was simulated by forcing RCMs with identical boundary conditions from the ERA-40 reanalysis and the ECHAM5/MPI-OM global climate model (GCM); climate change in the twenty-first century is based on the A1B scenario and assessed from the GCM-forced RCMs’ integrations. When forced by ERA-40, most RCMs exhibit cold bias in winter which contributes to an overestimation of the T2m annual cycle amplitude and the errors in interannual variability are in all RCMs smaller than those in the climatological mean. All models underestimate observed warming trends in the period 1951–2010. The largest precipitation biases coincide with locations/seasons with small observed amounts but large precipitation amounts near high orography are relatively well reproduced. When forced by the same GCM all RCMs exhibit a warming in the cold half-year and a cooling (or weak warming) in the warm period, implying a strong impact of GCM boundary forcing. The future eastern Adriatic climate is characterised by a warming, up to +5 °C towards the end of the twenty-first century; for precipitation, no clear signal is evident in the first half of the twenty-first century, but a reduction in precipitation during summer prevails in the second half. It is argued that land-sea contrast and complex coastal configuration of the Croatian coast, i.e. multitude of island and well indented coastline, have a major impact on small-scale variability. Orography plays important role only at small number of coastal locations. We hypothesise that the parameterisations related to land surface processes and soil hydrology have relatively stronger impact on variability than orography at those locations that include a relatively large fraction of land (most coastal stations), but affecting less strongly locations at the Adriatic islands.  相似文献   

3.
The global summer monsoon precipitation (GSMP) provides a fundamental measure for changes in the annual cycle of the climate system and hydroclimate. We investigate mechanisms governing decadal-centennial variations of the GSMP over the past millennium with a coupled climate model’s (ECHO-G) simulation forced by solar-volcanic (SV) radiative forcing and greenhouse gases (GHG) forcing. We show that the leading mode of GSMP is a forced response to external forcing on centennial time scale with a globally uniform change of precipitation across all monsoon regions, whereas the second mode represents internal variability on multi-decadal time scale with regional characteristics. The total amount of GSMP varies in phase with the global mean temperature, indicating that global warming is accompanied by amplification of the annual cycle of the climate system. The northern hemisphere summer monsoon precipitation (NHSMP) responds to GHG forcing more sensitively, while the southern hemisphere summer monsoon precipitation (SHSMP) responds to the SV radiative forcing more sensitively. The NHSMP is enhanced by increased NH land–ocean thermal contrast and NH-minus-SH thermal contrast. On the other hand, the SHSMP is strengthened by enhanced SH subtropical highs and the east–west mass contrast between Southeast Pacific and tropical Indian Ocean. The strength of the GSMP is determined by the factors controlling both the NHSMP and SHSMP. Intensification of GSMP is associated with (a) increased global land–ocean thermal contrast, (b) reinforced east–west mass contrast between Southeast Pacific and tropical Indian Ocean, and (c) enhanced circumglobal SH subtropical highs. The physical mechanisms revealed here will add understanding of future change of the global monsoon.  相似文献   

4.
F. Giorgi  X. Bi  J. S. Pal 《Climate Dynamics》2004,22(6-7):733-756
We present an analysis of a multidecadal simulation of present-day climate (1961–1990) over Europe with the regional climate model RegCM nested within the global atmospheric model HadAMH. Climatic means, interannual variability and trends are examined, with focus on surface air temperature and precipitation. The RegCM driven by HadAMH fields is able to reproduce the basic features of the observed mean surface climate over Europe, its seasonal evolution and the regional detail due to topographic forcing. Surface air temperature biases are mostly less than 1–2 °C and precipitation biases mostly within 10–20%. The RegCM has more intense vertical transport of temperature and water vapor than HadAMH, which results in lower surface air temperatures and greater precipitation than found in the HadAMH simulation. In some cases this is in the direction of greater agreement with observations, while in others it is in the opposite direction. The simulation shows a tendency to overestimate interannual variability of temperature and precipitation compared to observations, particularly during summer and over the Mediterranean regions. It is shown that in DJF, MAM and SON the RegCM interannual variability is primarily determined by the boundary forcing from HadAMH, while in JJA the internal model physics and resolution effects dominate over many subregions of the domain, and the RegCM has higher interannual variability than HadAMH. The precipitation trends simulated by the nested modeling system for the period 1961–1990 capture some features of the observed trends, in particular the cold season drying over the Mediterranean regions. Ensembles of simulations are, however, needed for a more robust assessment of the models capability to simulate climatic trends. Overall, this simulation is of good quality compared with previous nested RegCM experiments and will constitute the basis for the generation of climate change scenarios over the European region to be reported in future work.  相似文献   

5.
The variability of methane emissions from wetlands in the tropics and northern temperate regions can explain more than 70% of the interannual variation in global wetland methane emissions, which are largely driven by climate variability. We use climate reanalysis, remote sensing wetland area dataset and simulations from 11 land models contributing to Global Methane Budget to investigate the interannual variation and anomalies of wetland methane emissions in the Asian Monsoon region. Methane emissions in this region steadily increased over 2000–2012. However, abnormally low methane emissions were found in equatorial fully humid (Af), warm temperate winter dry (Cw), and warm temperate fully humid (Cf) Asian Monsoon climate sub-regions in 2008, 2009 and 2011, respectively. These spatially-shifting low emissions occurred simultaneously with observed wetland area shrinkage due to abnormally low precipitation. Interannual variability of wetland methane emissions in Asian Monsoon region are primarily driven by South Asian Monsoon system. However, the abnormally low emissions are related to strong La Niña events, and its accompanying effect of weakened East Asian Monsoon system and eastward Western Pacific subtropical high, which drives the shifting pattern of rainfall, and thus the spatial pattern of methane emission anomalies.  相似文献   

6.
Nine models from the Coupled Model Intercomparison Project version 3 dataset are employed to examine projected changes in the South American Monsoon System annual cycle by comparing the 20th Century and SRES A2 scenarios. The following hypotheses are examined: (1) the warm season climate responses in the Southeast, Continental South Atlantic Convergence Zone (CSACZ) and Monsoon regions are related by regional circulation and moisture transport changes which, in turn, must be consistent with robust large-scale changes in the climate system, and (2) an increased threshold for convection in a warmer world may affect the timing of warm season rains. The present analysis reaffirms that the Southeast region is likely to experience increased precipitation through the warm season. Additional results exhibit more uncertainty due to large inter-model variance and disagreement in the A2 scenarios. Nevertheless several statistically significant results are found. In the Monsoon and to a lesser extent in the CSACZ region, the multi-model median suggests reduced precipitation during spring (Sep–Nov). These continental precipitation changes are accompanied by a southward shift of the maximum precipitation in the South Atlantic Convergence Zone. Changes in circulation include a poleward displaced South Atlantic Anticyclone (SAAC) and enhanced moisture transport associated with a strengthened northerly low level flow east of the Andes during spring. Moisture transport divergence calculations indicate unchanged divergence in the Monsoon region during spring and increased convergence in the Southeast throughout the warm season. The circulation and moisture transport changes suggest the increased precipitation in the Southeast during spring may be related to changes in the SALLJ and SAAC, which both enhance moisture transport to the Southeast. The seasonally dry Monsoon region is further affected by an increased threshold for convection in the warmer, more humid and stable climate of the 21st century, which combined with the circulation changes may weaken the onset of the rainy season. Although there is substantial variability among the models, and the results are represented by small changes compared with the multi-model variance, their statistical significance combined with their consistency with expected robust large scale changes provides a measure of confidence in otherwise tentative results. Further testing of the relationships presented here will be required to fully understand projected changes in the South American Monsoon.  相似文献   

7.
Many scientific studies warn of a rapid global climate change during the next century. These changes are understood with much less certainty on a regional scale than on a global scale, but effects on ecosystems and society will occur at local and regional scales. Consequently, in order to study the true impacts of climate change, regional scenarios of future climate are needed. One of the most important sources of information for creating scenarios is the output from general circulation models (GCMs) of the climate system. However, current state-of-the-art GCMs are unable to simulate accurately even the current seasonal cycle of climate on a regional basis. Thus the simple technique of adding the difference between 2 × CO2 and 1 × CO2 GCM simulations to current climatic time series cannot produce scenarios with appropriate spatial and temporal details without corrections for model deficiencies. In this study a technique is developed to allow the information from GCM simulations to be used, while accommodating for the deficiencies. GCM output is combined with knowledge of the regional climate to produce scenarios of the equilibrium climate response to a doubling of the atmospheric CO2 concentration for three case study regions, China, Sub-Saharan Africa and Venezuela, for use in biological effects models. By combining the general climate change calculated with several GCMs with the observed patterns of interannual climate variability, reasonable scenarios of temperature and precipitation variations can be created. Generalizations of this procedure to other regions of the world are discussed.  相似文献   

8.
嵌套域大小对区域气候模式模拟效果的影响   总被引:3,自引:3,他引:3  
This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting a regional climate model (RCM) upon a general circulation model (GCM). Evidence suggests that the size exerts greater impacts upon regional climate of the country, revealing that a larger nested size is su perior to a small one for simulation in mitigating errors of GCM-provided lateral boundary forcing. Also,simulations show that the RCM should incorporate regions of climate systems of great importance into study and a low-resolution GCM yields more pronounced errors as a rule when used in the research of the Tibetan Plateau, and, in contrast, our PσRCM can do a good job in describing the plateau′s role in a more realistic and accurate way. It is for this reason that the tableland should be included in the nested area when the RCM is employed to investigate the regional climate. Our PσRCM nesting upon a GCM reaches morerealistic results compared to a single GCM used.  相似文献   

9.
外强迫对热带季节内振荡影响的模拟研究   总被引:5,自引:2,他引:3  
应用经过修改的NCAR CCM3模式和CAM2模式进行的数值实验结果以及NCEP的GFS模式的输出结果讨论了海温等外强迫作用对热带季节内振荡的影响.结果表明,热带季节内振荡是热带大气固有的内部变率.它是由大气内部过程的相互作用决定的.但外强迫对热带季节内振荡的强度、传播方向等有明显的影响.当外强迫没有变化时,模式可以模拟出与观测近似的低频振荡.当作为外强迫的海温和太阳辐射有年内季节变化时,模式模拟的季节内振荡则明显减弱.当海温与辐射不仅有季节变化而且有年际变化时,模式模拟的季节内振荡会进一步减弱.具有长周期的外强迫还会削弱季节内振荡中东移波动的能量而增加静止波的强度.在与海洋模式耦合的状态下,模式不受来自海洋的外强迫影响,而是与海洋构成一个耦合系统,可以产生最强的季节内振荡.  相似文献   

10.
The interannual variability of climate in the Amazon basin is studied using precipitation and river level anomalies observed near the March/April rainy season peak for the period 1980–86, supported by satellite imagery of tropical convection. Evaluation of this data in conjunction with the corresponding circulation and sea-surface temperature (SST) anomaly patterns indicates that abundant rainy seasons in Northern Amazonia are characterized by anomalously cold surface waters in the tropical eastern Pacific, and negative/positive SST anomalies in the tropical North/South Atlantic, accelerated Northeast trades and a southward displaced Intertropical Convergence Zone (ITCZ) over the Atlantic sector. Years with deficient rainfall show broadly opposite patterns.General circulation model (GCM) experiments using observed SST in three case studies were aimed at testing the teleconnections between SST and Amazon climate implied by the empirical analysis. The GCM-generated surface fields resemble the corresponding observers fields most closely over the tropical Pacific and, with one exception, over the tropical Atlantic as well. The modeled precipitation features, along the Northwest coast of South America, anomalies of opposite sign to the North and South of the equator, in agreement with observations and results from a different GCM. Similarities in simulations run from different initial conditions, but using the same global SST, indicate broad consistency in response to common boundary forcing.  相似文献   

11.
This study identifies possible hotspots of climate change in South America through an examination of the spatial pattern of the Regional Climate Change Index (RCCI) over the region by the end of the twenty-first century. The RCCI is a qualitative index that can synthesize a large number of climate model projections, and it is suitable for identifying those regions where climate change could be more pronounced in a warmer climate. The reliability and uncertainties of the results are evaluated by using numerous state-of-the-art general circulation models (GCMs) and forcing scenarios from the Coupled Model Intercomparison Project phases 3 and 5. The results show that southern Amazonia and the central-western region and western portion of Minas Gerais state in Brazil are persistent climate change hotspots through different forcing scenarios and GCM datasets. In general, as the scenarios vary from low- to high-level forcing, the area of high values of RCCI increase and the magnitude intensify from central-western and southeast Brazil to northwest South America. In general, the climatic hotspots identified in this study are characterized by an increase of mean surface air temperature, mainly in the austral winter; by an increase of interannual temperature variability, predominantly in the austral summer; and by a change in the mean and interannual variability of precipitation during the austral winter.  相似文献   

12.
We summarize the recent progress in regional climate modeling in South America with the Rossby Centre regional atmospheric climate model (RCA3-E), with emphasis on soil moisture processes. A series of climatological integrations using a continental scale domain nested in reanalysis data were carried out for the initial and mature stages of the South American Monsoon System (SAMS) of 1993–92 and were analyzed on seasonal and monthly timescales. The role of including a spatially varying soil depth, which extends to 8 m in tropical forest, was evaluated against the standard constant soil depth of the model of about 2 m, through two five member ensemble simulations. The influence of the soil depth was relatively weak, with both beneficial and detrimental effects on the simulation of the seasonal mean rainfall. Secondly, two ensembles that differ in their initial state of soil moisture were prepared to study the influence of anomalously dry and wet soil moisture initial conditions on the intraseasonal development of the SAMS. In these simulations the austral winter soil moisture initial condition has a strong influence on wet season rainfall over feed back upon the monsoon, not only over the Amazon region but in subtropical South America as well. Finally, we calculated the soil moisture–precipitation coupling strength through comparing a ten member ensemble forced by the same space–time series of soil moisture fields with an ensemble with interactive soil moisture. Coupling strength is defined as the degree to which the prescribed boundary conditions affect some atmospheric quantity in a climate model, in this context a quantification of the fraction of atmospheric variability that can be ascribed to soil moisture anomalies. La Plata Basin appears as a region where the precipitation is partly controlled by soil moisture, especially in November and January. The continental convective monsoon regions and subtropical South America appears as a region with relatively high coupling strength during the mature phase of monsoon development.  相似文献   

13.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

14.
Time of Emergence (ToE) is the time at which the signal of climate change emerges from the background noise of natural climate variability, and can provide useful information for climate change impacts and adaptations. This study examines future ToEs for daily maximum and minimum temperatures over the Northeast Asia using five Regional Climate Models (RCMs) simulations driven by single Global Climate Model (GCM) under two Representative Concentration Pathways (RCP) emission scenarios. Noise is defined based on the interannual variability during the present-day period (1981-2010) and warming signals in the future years (2021-2100) are compared against the noise in order to identify ToEs. Results show that ToEs of annual mean temperatures occur between 2030s and 2040s in RCMs, which essentially follow those of the driving GCM. This represents the dominant influence of GCM boundary forcing on RCM results in this region. ToEs of seasonal temperatures exhibit larger ranges from 2030s to 2090s. The seasonality of ToE is found to be determined majorly by noise amplitudes. The earliest ToE appears in autumn when the noise is smallest while the latest ToE occurs in winter when the noise is largest. The RCP4.5 scenario exhibits later emergence years than the RCP8.5 scenario by 5-35 years. The significant delay in ToEs by taking the lower emission scenario provides an important implication for climate change mitigation. Daily minimum temperatures tend to have earlier emergence than daily maximum temperature but with low confidence. It is also found that noise thresholds can strongly affect ToE years, i.e. larger noise threshold induces later emergence, indicating the importance of noise estimation in the ToE assessment.  相似文献   

15.
We present an analysis of a high resolution multi-decadal simulation of recent climate (1971–2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm/day are simulated only at the high resolution of the double nested domain. (5) The model shows a tendency to overestimate the number of precipitation days and to underestimate the precipitation intensities. (6) A CSEOF analysis reveals that the model captures the strength of the annual cycle and the surface warming trend throughout the simulated period.  相似文献   

16.
Projected Changes in Asian Summer Monsoon in RCP Scenarios of CMIP5   总被引:2,自引:0,他引:2       下载免费PDF全文
Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.  相似文献   

17.
Climate change impact on precipitation for the Amazon and La Plata basins   总被引:2,自引:0,他引:2  
We analyze the local and remote impacts of climate change on the hydroclimate of the Amazon and La Plata basins of South America (SA) in an ensemble of four 21st century projections (1970–2100, RCP8.5 scenario) with the regional climate model RegCM4 driven by the HadGEM, GFDL and MPI global climate models (GCMs) over the SA CORDEX domain. Two RegCM4 configurations are used, one employing the CLM land surface and the Emanuel convective schemes, and one using the BATS land surface and Grell (over land) convection schemes. First, we find considerable sensitivity of the precipitation change signal to both the driving GCM and the RegCM4 physics schemes (with the latter even greater than the first), highlighting the pronounced uncertainty of regional projections over the region. However, some improvements in the simulation of the annual cycle of precipitation over the Amazon and La Plata basins is found when using RegCM4, and some consistent change signals across the experiments are found. One is a tendency towards an extension of the dry season over central SA deriving from a late onset and an early retreat of the SA monsoon. The second is a dipolar response consisting of reduced precipitation over the broad Amazon and Central Brazil region and increased precipitation over the La Plata basin and central Argentina. An analysis of the relative influence on the change signal of local soil-moisture feedbacks and remote effects of Sea Surface Temperature (SST) over the Niño 3.4 region indicates that the former is prevalent over the Amazon basin while the latter dominates over the La Plata Basin. Also, the soil moisture feedback has a larger role in RegCM4 than in the GCMs.  相似文献   

18.
The spectral version 1.1 of the Flexible Global Ocean-atmosphere-land System (FGOALS1.1-s) model was developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophys- ical Fluid Dynamics at the Institute of Atmospheric Physics (LASG/IAP). This paper reports the major modifications to the physical parameterization package in its atmospheric component, including the radia- tion scheme, convection scheme, and cloud scheme. Furthermore, the simulation of the East Asian Summer Mon...  相似文献   

19.
A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.  相似文献   

20.
Abstract

Current understanding of the possible nature of climatic change at the regional scale is limited by the spatial resolution of General Circulation Models (GCM). The use of GCM outputs without correction linked to the spatial variability of the variables can bring significant errors in their utilization at the regional scale. The potential of the Canadian GCM for regional applications in Quebec has been analysed by comparison to the climatic normals of temperature and precipitation, measured over the Quebec climatological network, on an annual and seasonal basis. This analysis has been undertaken with the support of a geographical information system (GIS) (PAMAP). In summary, a difference between the climatic normal and the GCM output has been estimated at 20% for temperature and 30% for precipitation. We present an analysis of a corrected regionalized scenario for the province of Quebec of the possible climatic change simulated by the Canadian GCM under the hypothesis of a doubling of atmospheric CO2. Results show an increase of the annual average temperature of 4° C for summer and 6°C for winter, associated with an average increase of 80 mm (10%) in annual precipitation, reaching 25% in some regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号