首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Su-Xi-Chang area and the city of Shanghai, located in the south of Yangtze Delta, China, has subsided due to groundwater overpumping. Because of the regional scale of the groundwater exploitation, cone of depression and land subsidence at present, Su-Xi-Chang area and Shanghai are treated as a single area for a land subsidence study, which could more clearly elaborate the relationships between the deformation features of hydrostratigraphic units and the different sites of the cone of depression. All hydrostratigraphic units in the study area were discussed throughout. Based on the field data, including data on compression of individual strata from groups of extensometers and groundwater levels from observation wells, the relationship between the deformation and the groundwater level was analyzed. The results indicate that the deformation features of the hydrogeologic units are greatly related to hydrogeologic properties and groundwater-level variations. An identical hydrogeologic unit may exhibit different deformation features in different locations such as along the periphery and in the center of the cone of depression. In addition, in the same location, a hydrogeologic unit also exhibits different features in different periods because of different groundwater level variations. The delay phenomenon of the sandy aquifer is not specific but occurs widely.  相似文献   

2.
Su-Xi-Chang area and Shanghai City, located in the south of Yangtze Delta, China, has subsided due to groundwater overpumping. Because of the regional scale of the groundwater exploitation, cone of depression and land subsidence at present, Su-Xi-Chang area and Shanghai City are treated as a single area for land subsidence study to avoid the uncertainty of boundary condition due to the regionalism. The characteristics of aquifer system compaction are complex because of the difference in the types, compositions and structures of the soils that the hydrostratigraphic units are composed of, and in the histories of groundwater level change the hydrostratigraphic units have experienced. Considering the fact that different hydrostratigraphic units have different kinds of deformation and that an identical unit may also present different deformation characteristics, such as elasticity, elasto-plasticity, and visco-elasto-plasticity, at different sites of the cone of depression or in different periods, corresponding constitutive laws have been adopted. This avoids the shortcomings of the previous research that the same constitutive law was adopted in all the hydrostratigraphic units during the entire time period. A coupled flow and subsidence model, which includes a three-dimensional flow model with variable coefficients and a one-dimensional (vertical) subsidence model, is built according to the complicated hydrological condition in the region. The simulation model is calibrated using observed data, which include compression of individual strata from groups of extensometers and groundwater levels from observation wells from 1995 to 2002. The model reproduced that the primary subsidence layer in Shanghai shifts from the shallow aquitard to the fourth confined aquifer because of the groundwater yield variations and the change of exploitation aquifers. However the third aquitard was the primary subsidence layer in Su-Xi-Chang area and the compaction deformation of the sandy aquifers was remarkable. The simulation results could provide some reasonable advice about groundwater exploitation in the future.  相似文献   

3.
胡建平  隋兆显  陈杰 《江苏地质》2006,30(4):261-264
1995年以来,针对严重的区域性地面沉降和地裂缝灾害,苏锡常地区地下水资源保护和管理工作逐渐加强,特别是从2000年开始,江苏省政府分阶段实施限期禁止开采工作,首先在超采区实行地下水禁采,到2005年底,在苏锡常地区全面禁止开采地下水,全区地下水环境、地面沉降状况出现明显好转,地下水水位普遍回升,地面沉降速率逐渐减缓。根据近年来苏锡常地区地面沉降基岩标、分层标的系统监测资料,对地下水禁采后地质环境的效应特别是地面沉降的变化特征进行了初步分析、研究,并对该区今后地质环境保护工作提出了对策和建议。  相似文献   

4.
Suzhou is located at the lower reaches of the Yangtze River in southeastern Jiangsu, China. It is part of the Su-Xi-Chang area including Suzhou, Wuxi and Changzhou. As one of the most developed areas in China, this region has suffered from severe land subsidence caused by extensive groundwater exploitation since 1980s. The land subsidence was controlled by prohibition of groundwater exploration in the past several years. However, the surface water pollution prompted a new task of how to sustainably utilize the groundwater resource, especially to satisfy the emergency demands of water supply. In this paper, we took Suzhou as a representative case to discuss how to develop groundwater resources while controlling the land subsidence. The relationship between the deformation and the groundwater level was analyzed, with focus on the deformation features after the period of groundwater exploitation ban. The results confirmed the conclusion by Shi et al. (2007, 2008a): even in the period of rising groundwater level, same units may manifest different deformation characteristics, such as elasticity, elasto-plasticity, and visco-elasto-plasticity, at different locations of the cone of depression. A land subsidence model that couples a 3-D groundwater model and a 1-D deformation model was developed to simulate the groundwater level and deformation. A high-resolution local grid (child model) for Suzhou was built based on the regional land subsidence model of Su-Xi-Chang area by Wu et al. (2009). The model was used for a number of predictive scenarios up to the year of 2012 to examine how to develop sustainable use of groundwater resources under the conditions of land subsidence control. Our results indicated that about 3.08 × 107 m3/a groundwater could be provided as emergency and standby water source while meeting the land subsidence control target of 10 mm/a.  相似文献   

5.
Land subsidence was first observed in Shanghai nearly a century ago, in 1921. Land subsidence attributed to groundwater extraction has been severe in China and is still occurring. Recent subsidence and associated earth fissures occurring since 2000 in three principal regions—the North China Plain, Fenwei Basin and Yangtze Delta—are introduced, and historical subsidence in these areas is briefly summarized. The subsidence-affected area in these regions with cumulative subsidence greater than or equal to 200 mm is more than 90,000 km2 and covers 22 provinces (cities), which include intensively developed and densely populated areas. Earth fissures accompanying the subsidence create significant geohazards; more than 1,000 earth fissures have been identified in the North China Plain, Fenwei Basin and Yangtze Delta. Effective land-subsidence-monitoring networks, that include continuous global positioning system (GPS) stations, repeat GPS and leveling surveys of geodetic benchmarks, InSAR, borehole extensometers, and groundwater observation wells, have been established in these three subsidence-affected areas. Mitigation measures and administrative means have been implemented in some areas, with good results in the Yangtze Delta area.  相似文献   

6.
Earth fissures are a geohazard in Jiangsu Province, China. They can be caused by earthquakes and active faults, underground mining, groundwater extraction and landslides. In order to establish a provincial rehabilitation plan in Jiangsu, a range of monitoring programs, surveys, geological investigations and modeling have been implemented or planned. One of the focuses of the project is the land subsidence and earth fissures caused by excessive groundwater withdrawal in Suzhou, Wuxi and Changzhou (Su-Xi-Chang) area, southern Jiangsu Province. Hetang earth fissure within the Su-Xi-Chang area was first reported in 1995 and a series of investigation has been conducted since then. The site investigations and geophysical survey in 1997 have recognized the causative factor as the excessive groundwater drawdown coupled by the underlying bedrock ridge. An open trench excavation in 2007 and a plane strain analysis suggest that Hetang earth fissures may have cracked from the bedrock ridge to ground surface. Geological drilling in 2007 has further confirmed the existence and configuration of the ridge and extracted soil samples for laboratory tests to obtain soil parameters for numerical analyses and modeling of land subsidence and earth fissures in the Su-Xi-Chang area, Jiangsu, China. The laboratory tests are currently in progress and the result of numerical analyses and modeling is expected to be presented in the near future.  相似文献   

7.
对"用调整地下水开采层次方法控制地面沉降"的质疑   总被引:3,自引:0,他引:3  
据不完全统计,至今我国已有90余个城市和地区相继发生不同程度的地面沉降,长江、黄河、珠江三角洲、华北平原、松辽平原及沿海许多地区,地面沉降正在发生和发展之中,尤其以上海为中心的长江三角洲及以天津为中心的华北平原,成为我国两片最大的沉降地区。地面沉降对这些地区社会和经济的可持续发展带来严重影响。几十年来,这些地区一直将“调整地下水开采层次”作为控制地面沉降措施之一。该文章认为“调整地下水开采层次”并非一种理想的控沉措施,不仅值得商榷,甚至为应该被否定的控沉措施。依据:①一般情况下,随深度增加,地层的压缩性会渐下;但是开采同量的地下水,其水位下降的速率及幅度深部含水组比浅部含水组要大的多,两者引起的沉降量不会有明显的差别;②从地下水开采资源组成与地面沉降关系分析,含水层深度越深,其中的压密释水量所占的比例也越大,造成的地面沉降也越严重;③地层的物理力学性质及固结状态,随深度的增加,也不完全是越来越好。  相似文献   

8.
上海的地面沉降在国内外具有典型性。沉降洼地的形成与发展在城市防汛、城区地面积水、重大线型工程差异沉降影响等方面对上海城市的可持续发展带来不利影响。地面沉降也通过洪涝、潮汛等显性灾害的成灾风险与致灾频率的增加,而体现出缓变型灾害的本质。上海目前已对全市地下水资源的开发利用实施有序管理,建立了覆盖全市整个陆域与第四纪地层的地面沉降监测网络体系,并融入了自动化测控与GPS监测等高新技术手段。同时密切结合城市总体建设发展规划,开展针对性的专题研究,深化城市地质工作,并注重与长江三角洲地区的联动。以科学有效的管理,落实可持续发展战略,使地区经济发展与地质生态环境保护协调统一。  相似文献   

9.
中国地面沉降及其需要解决的几个问题   总被引:46,自引:2,他引:46  
我国地面沉降主要出现在东、中部17个省市,总面积超过5×104km2,同时在17个省市出现成因上与它有关的地裂缝,危害是多方面的。沉降发生在经济高速发展的东部地区,造成的危害和损失也更大。我国地面沉降有下列特点:过量开采地下水是主要原因;各土层变形量既与其压缩性有关,也与它本身的厚度有关;砂土变形基本特征是压缩过程中总的应力与应变关系为非线性,压缩变形以塑性变形为主并包含有蠕变;水位恢复到开采前水平,沉降仍在继续,存在滞后等。从目前研究,特别是模拟研究的现状出发,指出存在8个方面的不足,进而提出需要研究解决的6个科学问题,为提高我国的研究水平献策。  相似文献   

10.
Excessive groundwater withdrawal has caused severe land subsidence in the Su-Xi-Chang (SXC) area, China. The restriction and prohibition on groundwater pumping have been carried out since the late 1990s. Based on the latest updated field data, the changing pattern of groundwater level and the distribution of land subsidence are analyzed. The distribution of land subsidence in SXC is closely related to that of the cone of depression in the second confined aquifer in time and space. But land subsidence is not in synchronization with the changing groundwater level. Both aquitards and aquifers compacted continuously in the early period of groundwater level rising and behaved as creep materials. A series of laboratory tests were conducted on aquifer sands, which indicated that the creep deformation under virgin compression is much greater than that under recompression and unloading, and that the creep of sands decreases rapidly with the cycles of repeating load. The test results reveal the mechanism of sand creep under the condition of long-term groundwater pumpage. As a consequence of the restriction and prohibition on groundwater pumping, groundwater level has obviously recovered in the vast majority of the SXC area, and land subsidence has slowed down and even a little rebound has occurred in some sites in Suzhou and Changzhou. If the pumpage is strictly limited continuously, the groundwater level will not decline below the historical lowest value but fluctuate within a certain range. In such a case, land subsidence in SXC will no longer develop obviously.  相似文献   

11.
River delta plains (deltas) are susceptible to subsidence producing undesirable environmental impact and affecting dense population. The City of Shanghai, located in the easternmost of Yangtze Delta in China, is one of the most developed regions in China that experiences the greatest land subsidence. Excessive groundwater withdrawal is thought to be the primary cause of the land subsidence, but rapid urbanization and economic development, mass construction of skyscrapers, metro lines and highways are also contributing factors. In this paper, a spatial–temporal analysis of the land subsidence in Shanghai was performed with the help of the Small Baseline Subset Interferometric Synthetic Aperture Radar. Twenty l-band ALOS PALSAR images acquired during 2007–2010 were used to produce a linear deformation rate map and to derive time series of ground deformation. The results show homogeneous subsidence within the research area, but exceptionally rapid subsidence around skyscrapers, along metro lines, elevated roads and highways was also observed. Because groundwater exploitation and rapid urbanization responsible for much of the subsidence in the Shanghai region are expected to continue, future subsidence monitoring is warranted.  相似文献   

12.
长期过量开采地下水所引发的地面沉降是一个复杂的非线性变化过程,对其进行数值模拟时,如不考虑沉降发展过程中模型参数的非线性变化,会给预测带来很大误差。本文依据苏锡常地区实际资料,通过典型钻孔土力学试验,确定出土体在不同荷载条件下的弹塑性和蠕变特征方程以及土体渗透系数随孔隙度变化的关系式。在此基础上建立了研究区三维变系数地下水流模型及考虑土体垂向不同变化特征(弹塑变或蠕变)的一维区域沉降模型,并采用多尺度有限单元法对模型进行了真正意义上的耦合求解。  相似文献   

13.
Su-Xi-Chang area is one of the typical regions in China which suffers from severe land subsidence. Various field monitoring records were integrated to study the characteristics and mechanisms of land subsidence in this region. The development of the land subsidence in this region shows a tight spatial and temporal correlation with the groundwater pumping. Based on the analysis of the field data, it is found that the deformation patterns of the hydrogeologic units are greatly related to the hydrogeologic properties and groundwater level variations. Some have an elastic behavior, others may have an elastic–plastic rheology. Hence, a 3D finite element numerical model considering the rheological properties of the soil was developed to simulate the groundwater level and land subsidence. Both hydraulic conductivity and specific storage were expected to vary with the porosity during the process of consolidation. Multiscale finite element method (MsFEM) was applied to solve the model during the period from 1996 to 2004. After calibrating the model with the observed groundwater level and subsidence data, the parameters of the multi-layers system were estimated. The calibrated model outputs fit reasonably well with the observed data. Consequently the model can be applied to predict groundwater level and land subsidence in future pumping scenarios. The model predictive results show that land subsidence rate can be controlled and even rebound may occur after the implementation of the groundwater exploitation prohibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
闵望  陆华  杨琦 《江苏地质》2023,47(4):438-446
江苏如东北部水产养殖区自规模化运营以来,长期对区内浅部地下水进行集中式开采,区内地下水水位持续下降形成水位漏斗,继而导致地面沉降的发生,是苏北地区典型水产养殖引起的地面沉降区,为全省地面沉降研究新的拓展区和实践区。根据2017—2020年度高精度InSAR监测数据,圈定研究区地面沉降重点沉降区及影响范围,通过39个开采井水位统测数据对比研究,证实区内地下水水位漏斗与地面沉降展布形态和特征具有较好的一致性,科学佐证了地下水开采是研究区地面沉降形成的主要诱因。  相似文献   

15.
Land subsidence is presented in many factors in different areas with urbanization. Internal soil erosion, owing to pumping confined groundwater during the deep foundation pit construction, has contributed to land subsidence. Four governing equations are presented to describe the process of internal soil erosion based on the mathematical–physical model. The finite element computation results, based on practical deep foundation pit engineering consisted of 8 layers of soil of Shanghai area, demonstrate that internal soil erosion will cause the increment of land subsidence and deformation and is related to the hydraulic gradient and the characters of the soils.  相似文献   

16.
Hangzhou-Jiaxing-Huzhou Plain in northern Zhejiang Province, located between the Yangtze and Qiantang Rivers, is one of the regions where economic development is most rapid in China. Geological and hydrogeological surveys reveal a multi-layered aquifer system beneath the plain, which includes Holocene phreatic water layers and Pleistocene confined aquifers. Based on the historical records of groundwater extraction, groundwater levels, and ground settlement from 1964 to 2000, it is shown that ground subsidence has resulted from the continuously increasing extraction of groundwater from deep confined aquifers, and that the evolution of land subsidence can be characterized by a multifractal model. Based on this model, a set of empirical power-law relations have been established between: the land subsidence velocity and the annual groundwater extraction; groundwater drawdown and the annual land subsidence velocity; and the amount of land subsidence and the associated area of land. A set of indices are proposed for evaluating dynamic evolution of groundwater exploitation and land subsidence for the Hang-Jia-Hu Plain, from which the critical degree of evolution of land subsidence in the near future can be estimated using data on groundwater exploitation and water level changes.
Changjiang LiEmail: Phone: +86-571-85116129Fax: +86-571-87057826
  相似文献   

17.
由于长期过量开采地下水,苏州、无锡和常州(苏锡常)的局部地区地裂缝发育,在深层地下水禁采十多年后的今天有些地裂缝还在发展。地裂缝的发育及发展受到诸多因素的影响,其具体力学机制尚不明确。为了查明影响地裂缝发育的因素、确定各因素对地裂缝的影响程度,本文在苏锡常地裂缝发育现状的基础上,利用基于确定性系数计算权重法对苏锡常地裂缝发育危险性进行预测分区。模型考虑了基岩埋深、基岩坡度、累计地面沉降量、沉降坡度、第二含水层厚度、第二含水层厚度变化梯度、第二含水层水位降深、第四纪沉积相等8个主要影响因素,分析结果显示苏锡常地区北部地裂缝易发,东南部发生地裂缝的危险性较小。计算结果与苏锡常地裂缝的分布及发育情况基本一致,验证了该方法在地裂缝预测方面的有效性。本研究对苏锡常地区地下水开采及城市建设规划具有一定的指导意义。  相似文献   

18.
根据江苏省徐州市睢宁县城区内可压缩土层的类型、空间分布特点及压缩变形等特征,建立了本区地面沉降计算地质模型。利用该模型计算出城区2013年累计地面沉降量3.08~380.60 mm,平均为162.41 mm,最大沉降量发生在城区西北部,该区域可压缩土层、黏性土的累计厚度大,地下水水位下降幅度较大。根据预测2030年地下水位埋深条件,采用地面沉降地质模型计算得出城区累计地面沉降量,在此基础上对区内地面沉降危险性进行分区,从而为地下水开采总量的控制及地面沉降监测控制提供相关建议措施,以避免城区2030年后地面沉降地质灾害逐步发展为特大型地质灾害。  相似文献   

19.
Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956–1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990–1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifer-system displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10 % of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.  相似文献   

20.
土体变形特征与其经历的应力状态有关。由于抽灌水位置和水量的变化,同一土层中不同时期的地下水位可以呈现不同的变化模式,土层表现出不同的变形特征。论文根据上海1400多个水位孔近40a的水位观测资料和各土层的变形资料,从土层变形角度将地下水位的变化方式划分为5种模式。分析了每种地下水位变化模式下土层的变形特征,并进一步分析了上海地面沉降在时间和空间上的特征。分析结果表明:地下水位的变化模式对上海土层的变形有显著影响。同一土层在不同的水位变化模式下可表现为弹性、弹塑性或粘弹塑性的变形特征;地面沉降与地下水开采量、地下水开采层次与主要沉降层具有密切的关系,开采地下水是上海地面沉降的主要原因;与现阶段含水层的水位变化模式相联系,第四承压含水层是上海最近几年来地面沉降的主要沉降层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号