首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Available satellite, rocket and balloon observations on cosmic X- and gamma ray background are critically examined to understand the spectral characteristics of the radiation. Appropriate corrections have been applied to the balloon observations to account for the multiple Compton scattering of X-rays in the atmosphere. It is shown that within the experimental uncertainties, all the available observations of cosmic X- and gamma ray background in the energy range 1 keV-1 MeV are consistent with a single spectrum of type $${\text{d}}N/{\text{d}}E = 30 E^{ - 2.0 \pm 0.2} {\text{photons cm}}^{{\text{ - 2}}} {\text{s}}^{{\text{ - 1}}} {\text{sr}}^{{\text{ - 1}}} {\text{keV}}^{{\text{ - 1}}} $$ .  相似文献   

2.
The possibility of chemical ‘trapping’ of the Ar+ ion in the reaction $$v{\text{ }} + {\text{ }}^{{\text{37}}} {\text{Cl}} \to {\text{ }}^{{\text{37}}} {\text{Ar}}^{\text{ + }} + {\text{ e}}^ - ,$$ when it takes place in tetrachloroethylene (C2Cl4) liquid, is examined in detail. It is concluded that if trapping does take place, the rate is much smaller than the charge neutralization rate. Therefore, this niechanism cannot explain the observed small rate of Ar production in the Brookhaven solar neutrino experiment. A detailed examination of a number of experiments which are sensitive to possible trapping lends strong support to this conclusion.  相似文献   

3.
We have studied the effect of the flow in the accretion disk. The specific angular momentum of the disk is assumed to be constant and the polytropic relation is used. We have solved the structure of the disk and the flow patterns of the irrotational perfect fluid.As far as the obtained results are concerned, the flow does not affect the shape of the configuration in the bulk of the disk, although the flow velocity reaches even a half of the sound velocity at the inner edge of the disk. Therefore, in order to study accretion disk models with the moderate mass accretion rate—i.e.,
  相似文献   

4.
A simple model facilitates calculation of the influence of magnetic field configuration on the conduction cooling rate of a hot post-flare coronal plasma. The magnetic field is taken to be that produced by a line dipole or point dipole at an arbitrary depth below the chromosphere. For the high temperatures (T 107 K) produced by flares, the plasma may remain static and isobaric. The influence of the field is such as to increase the heat flux (per unit area) into the chromosphere, but to decrease the total conduction cooling of the flare plasma. This leads to a significant enhancement of the total energy radiated by the flare plasma.  相似文献   

5.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

6.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

7.
Some problems of qualitative theory of solar tsunami caused by rapid magnetic disturbances are discussed. The energy of tsunami is found sufficient to produce oscillations of quiescent prominences, facular brightenings after flares and also some flares and also some flares of moderate intensity. Coronal plasma satisfied the condition of incompressibility, but in the chromosphere the effects of incompressibility, but in the chromosphere the effects of compressibility generally must be taken into account. Long gravity waves with the wave-length of 105 km can propagate on distances comparable with solar radius without sensible damping and dissipation. The solution of tsunami problem for a model of two-component ocean consists of two long gravity waves moving with different velocity in the chromosphere and corona. The effect of encounter of tsunami with magnetic fields are discussed.  相似文献   

8.
A linear correlation between the ratio of the[CII( $^{\text{2}}$ P A linear correlation between the ratio of the[CII( P P )] line intensity to the [ CO(J:1 →0)] line emission, I /I and the equivalent width (EW) is found, over the range 2–71 ? in EW, for a sample of 21late-Type= galaxies. The latter is comprised of an optically selected sample of 12 normal Virgo Cluster spiral galaxies with [CII] detections obtained by us with ISOLWS, plus nine late-Type= galaxies with higher star formation rates (SFRs), for which [CII] data and, especially, EW data are available in the literature. As a result we infer I /I to be a reliable tracer of the current mass-normalized global SFR for non-starburst spiral galaxies. Moreover, the ratio of the [CII] line to the total far-infrared (FIR) continuum intensity, I /I , is found to decrease from ∼0.5% to ∼0.1% with decreasing SFR which we propose is due to a `[CII]-quiet' component of I from dust heated by the general interstellar radiation field (ISRF). The more `quiescent' galaxies in the sample have values of I /I different from those observed in `compact' Galactic interstellar regions. Their [CII]-emission is interpreted to be dominated by diffuse regions of the interstellar medium (ISM). For normal `star-forming' galaxies the diffuse component of the [CII] emission is estimated to account for at least 50% of the total. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We investigate the ‘equilibrium’ and stability of spherically-symmetric self-similar isothermal blast waves with a continuous post-shock flow velocity expanding into medium whose density varies asr ahead of the blast wave, and which are powered by a central source (a pulsar) whose power output varies with time ast ω?3. We show that:
  1. for ω<0, no physically acceptable self-similar solution exists;
  2. for ω>3, no solution exists since the mass swept up by the blast wave is infinite;
  3. ? must exceed zero in order that the blast wave expand with time, but ?<2 in order that the central source injects a finite total energy into the blast wave;
  4. for 3>ωmin(?)>ω>ωmax(?)>0, where $$\begin{gathered} \omega _{\min } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} + {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} + {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \omega _{\max } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} - {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} - {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \end{gathered} $$ two critical points exist in the flow velocity versus position plane. The physically acceptable solution must pass through the origin with zero flow speed and through the blast wave. It must also pass throughboth critical points if \(\varphi > \tfrac{5}{3}\) , while if \(\varphi< \tfrac{5}{3}\) it must by-pass both critical points. It is shown that such a solution exists but a proper connection at the lower critical point (for ?>5/3) (through whichall solutions pass with thesame slope) has not been established;
  5. for 3>ω>ωmin(?) it is shown that the two critical points of (iv) disappear. However a new pair of critical points form. The physically acceptable solution passing with zero flow velocity through the origin and also passing through the blast wave mustby-pass both of the new critical points. It is shown that the solution does indeed do so;
  6. for 3>ωmin(?)>ωmax(?)>ω it is shown that the dependence of the self-similar solution on either ω or ? is non-analytic and therefore, inferences drawn from any solutions obtained in ω>ωmax(?) (where the dependence of the solutionis analytic on ω and ?) are not valid when carried over into the domain 3>ωmin(?)>ωmax(?)>ω;
  7. all of the physically acceptable self-similar solutions obtained in 3>ω>0 are unstable to short wavelength, small amplitude but nonself-similar radial velocity perturbations near the origin, with a growth which is a power law in time;
  8. the physical self-similar solutions are globally unstable in a fully nonlinear sense to radial time-dependent flow patterns. In the limit of long times, the nonlinear growth is a power law in time for 5<ω+2?, logarithmic in time for 5>ω+2?, and the square of the logarithm in time for 5=ω+2?.
The results of (vii) and (viii) imply that the memory of the system to initial and boundary values does not decay as time progresses and so the system does not tend to a self-similar form. These results strongly suggest that the evolution of supernova remnants is not according to the self-similar form.  相似文献   

10.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   

11.
The diffusion of charged particles in a stochastic magnetic field (strengthB) which is superimposed on a uniform magnetic fieldB 0 k is studied. A slab model of the stochastic magnetic field is used. Many particles were released into different realizations of the magnetic field and their subsequent displacements z in the direction of the uniform magnetic field numerically computed. The particle trajectories were calculated over periods of many particle scattering times. The ensemble average was then used to find the parallel diffusion coefficient . The simulations were performed for several types of stochastic magnetic fields and for a wide range of particle gyro-radius and the parameterB/B 0. The calculations have shown that the theory of charged particle diffusion is a good approximation even when the stochastic magnetic field is of the same strength as the uniform magnetic field.  相似文献   

12.
Cosmic ray (c. r.) propagation in interstellar magnetic fields is often considered in the diffusion approximation, i.e. by the diffusion equation in the coordinate space. Cosmic ray momentum distribution in this case is considered isotropic when the space gradients of c.r density are absent. This approach, with the use of an unfixed effective diffusion coefficientD independent of the energyE enables one to describe all the data available However, neither the diffusion mechanism nor the limits of applicability of the diffusion approximation is clear particularly ifD is independent ofE. Furthermore, the diffusion coefficientD must be expressed through the characteristics of the interstellar medium and possibly through the flux velocity and density of c.r. etc. One of the possible approaches for the analysis of the mechanism and characteristic features of c.r. distribution and isotropization is the account taken of the plasma effects and specifically, the study of c.r. flux instability arising when c.r. are moving in the interstellar plasma. As a result of such instability c.r. may generate waves of different types (magnetohydrodynamic, high-frequency plasma and other waves). Generation of waves and scattering on them result in isotropization of cosmic rays while their propagation under certain conditions turns out similar to that under diffusion.An attempt is made here to systematically analyse the avove mentioned plasma effects and to find out to what extent they are responsible for the behaviour of c.r. in the Galaxy. It turns out that c.r. In any case this is true if this mechanism is regarded as the only c.r. isotropization mechanizm within a wide energy range from 1 to 1000 GeV. Isotropization and spatial diffusion of c.r. up toE100–1000 GeV on the waves from external sources (for example, on the waves from the supernova shells) also proved impossible if the diffusion coefficient is assumed to be independent of c.r. energy. Some new possibilities of c.r. isotropization are also considered.A List of Notations D cosmic ray (c.r.) space diffusion coefficient - degree of c.r. anyisotropy - E,E kin total and kinetic particle energy - p,p particle momentum and its absolute value - angle between the particle momentum direction and the magnetic field direction (z-axis) - cos - v, particle velocity and its absolute value - c light velocity - f(p),f(E) momentum and energy particle distribution function - N( > E) = N( > p) = f(p) dp/(2)3 = E f dE c.r. particle density - c.r. spectrum index,N(>E)=KE –+1 - n H neutral particle density - n=n e=n i ion and electron density - H niagnetic field - T temperature - thermal velocities of electrons and ions - Boltzmann constant - Alfén velocity - M, m proton and electron masses - e electron charge - wave frequency - H =eH/Mc, = H (Mc 2/E) gyrofrequency of a plasma proton and relativistic particle - H =eH/mc gyrofrequency of an electron - plasma frequency - v ii,v ei,v en,v in collision frequencies between ions, electrons and ions, electrons and neutrals, ions and neutrals - growth rate of wave amplitude - k,k wave vector and its absolute value - angle between the directions of the vectorsk andH - wave energy density  相似文献   

13.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

14.
Closely spaced microphotometer tracings parallel to the dispersion of one excellent frame of a K-line time sequence have been utilized for a study of the nature of the K2v , K2R intensities in the case of the solar chromosphere. The frequency of occurrence of the categories of intensity ratio are as follows: per cent; per cent; per cent; per cent; per cent. Two types of absorbing components are postulated to explain the pattern of observed K2v , k2R intensity ratios. One component with minor Doppler displacements acting on the normal K232 profile, where K2V >K2R , produces the cases K2v K2R , K2v = K2R , K2v <K2R . The other component arises from dark condensations which are of size 3500 kms as seen in K2R . They have principally large down flowing velocities in the range 5–8 km/sec and are seen on K3 spectroheliograms with sizes of about 5000 kms, within the coarse network of emission. These dark condensations give rise to the situation K2R = 0.K2-line widths are measured for all tracings where K2v , K2R are measurable simultaneously. The distribution curve of these widths is extremely sharp. The K2 emission source is identified with the bright fine mottles visible on the surface. Evidence for this interpretation comes from the study of auto-correlation functions of K2 intensity variations and the spacing between the bright fine mottles from both spectrograms and spectroheliograms. The life time of the fine mottling is 200 sec.The supergranular boundaries which constitute the coarse network come in two intensity classes. A low intensity network has the fine mottles as its principal contributor to the K emission. When the network is bright, the enhancement is caused by increased K emission due to the accumulation of magnetic fields at the supergranule boundary. The K2 widths of the low intensity supergranular boundary agree with the value found for the bright mottles. Those for the brighter network are lower than this value, similar to the K2 widths as seen in the active regions.It is concluded that bright fine mottling is responsible for the relation, found by Wilson and Bappu, between K emission line widths and absolute magnitudes of the stars.The paper discusses the solar cycle equivalents that stellar chromospheres can demonstrate and indicates a possible line of approach for successful detection of cyclic activity in stellar chromospheres.  相似文献   

15.
We present the analysis of observations of the August flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impact and by heating by the energetic electrons and protons. The region showed inverted polarity and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.We detected fast (5 s duration) small (1') flashes in 3835 at the footpoints of flux loops in the August 2 impulsive flare at 1838 UT, which may be explained by dumping of > 50 keV electrons accelerated in individual flux loops. The flashes show excellent time and intensity agreement with > 45 keV X-rays. In the less impulsive 2000 UT flare a less impulsive wave of emission in 3835 moved with the separating footpoints. The thick target model of X-ray production gives a consistent model for X-ray, 3835 and microwave emission in the 18:38 UT event.Spectra of the August 7 flare show emission 12 Å FWHM in flare kernels, but only 1 to 2 Å wide in the rest of the flare. The kernels thus produce most of the H emission. The total emission in H in the August 4 and August 7 flares was about 2 × 1030 erg. We belive this dependable value more accurate than previous larger estimates for great flares. The time dependence of total H emission agrees with radio and X-ray data much better than area measurements which depend on the weaker halo.Absorption line spectra show a large (6 km/s-1) photospheric velocity discontinuity across the neutral line, corresponding to sheared flow across that line.This work has been supported by NASA under NGR 05 002 034, NSF Atmospheric Sciences program under GA 24015, and AFCRL under FI9628-73-C-0085.  相似文献   

16.
The degree of association between geoeffective (SID producing) flares (hereafter called SID flares) and sunspot morphology is examined. It is found that: (1) the frequency of SID flares associated with sunspot groups is linear function of sunspot area and rate of change in area; (2) the SID flare intensity is dependent on the sunspot area and on the magnetic morphology (field geometry); (3) the probability of a sunspot group being magnetically complex (henceforth called complex ratio) is a linear function of spot area, the larger this area the more likely a group is in the βγ or δ magnetic class; (4) the complex ratio exhibits the greatest degree of association to SID flare frequency. We conclude from these results that a higher frequency of D-region ionizing flares (emitting a soft X-ray flux >2 × 10?3 erg cm?2 s?1) is likely to accompany the disk transit of large area, complex spot groups. This combination of morphological factors reflects a shearing of the associated force-free magnetic field, with accumulation of free magnetic energy to power SID flares. Mutual polarity intrusion would be one observational signature of the pre-flare energy storing process.  相似文献   

17.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

18.
Observations of radio emission at 3.3 mm wavelength associated with magnetic fields in active regions are reported. Results of more than 200 regions during the years 1967–1968 show a strong correlation between peak enhanced millimeter emission, total flux of the longitudinal component of photospheric magnetic fields and the number of flares produced during transit of active regions. For magnetic flux greater than 1021 maxwells flares will occur and for flux of 1023 maxwells the sum of the H flare importance numbers is about 40. The peak millimeter enhancement increases with magnetic flux for regions which subsequently flared. Estimates of the magnetic energy available and the correlation with flare production indicate that the photospheric fields and probably chromospheric currents are responsible for the observed pre-flare heating and provide the energy of flares.This work was supported in part by NASA Contract No. NAS2-7868 and in part by Company funds of The Aerospace Corporation.  相似文献   

19.
Qiu  J.  Falchi  A.  Falciani  R.  Cauzzi  G.  Smaldone  L. A. 《Solar physics》1997,172(1-2):171-179
We analyze the pre-flare and impulsive phase of an eruptive (two-ribbon) flare at several wavelengths. The total energy (mechanical plus radiative) released by the flare is 8 x 1030 erg, about a factor 6 higher than the free magnetic energy (1.3 1030 erg) estimated from the non-potentiality of the magnetic field configuration in the flare area. During the impulsive phase, we find a very good time coincidence between the hard X-ray light curve and the light curves for 2 small areas ( 4 in size) in the red wing of the H line and in the He-D3 line center. This temporal coincidence is compatible with the interpretation that hard X-ray emission is produced by bremsstrahlung of accelerated electron beams striking these dense areas. For the other regions of the H ribbons we find more gradual light curves, suggesting a different energy transport mechanism such as conduction.  相似文献   

20.
The purpose of this investigation was to determine what connection exists between coronal plumes and polar surface features. To this end the properties of plumes were re-examined by making a detailed statistical analysis of photographs of three eclipses (1962, 1963, and 1965) of the last sunspot minimum. It is found that a ‘typical’ plume has a core density ≈ 108 cm?3, a half width ≈ 3.3 × 104km, and a density profile with distance r from its axis characterized by $$N \approx {\text{10}}^{\text{8}} \left( {1 - \frac{r}{{3.9 \times 10^4 }}} \right)^{1.6} $$ There is some (although only weak) regularity in the projected spacing of plumes with a mean separation of ≈ 7 × 104 km. The relation between plumes and various surface features is examined. Although little direct evidence can be assembled, we conclude that a direct connection exists between plumes and photospheric faculae, bright K3 faculae, and the small-scale magnetic structure present in the chromospheric network. It is hypothesized that plumes originate at the bright cores of the rosettes which lie along the chromospheric network. The distribution of magnetic field in the corona above a surface covered with idealized chromospheric network cells is calculated. The fact that the shape and size of the magnetic flux tubes originating from the rosette agrees with that of observed plumes supports the hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号