首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Structural geological and tectonophysical studies at a qualitatively new methodical level in the Yubileinaya pipe open pit have shown that the fault-block tectonics plays substantial role in the spatial localization of kimberlite bodies. It has been established that localization of diamond-bearing kimberlite pipes is controlled by faults, which are expressed in the platform cover as wide, complexly built zones with a high density of local faults and tectonic fractures. As follows from 3D representation of data and analysis of stress fields, tectonic movements during kimberlite emplacement had shear kinematics. A tectonophysical model of local control of kimberlite bodies by fault-line extensional structural elements (pull-apart fissures and duplexes) has been elaborated.  相似文献   

2.
A wide variety of geological data and geological observations by numerous geoscientists do not support a two-stage crater excavation and in-fill model, or a champagne glass-shaped geometry for the 169 or 140/141 kimberlite bodies in the Fort à la Corne kimberlite field, Saskatchewan as described by Berryman, A., Scott Smith, B.H., Jellicoe, B., (2004). Rather, these kimberlite bodies are best described as polygenetic kimberlite tephra cones and tuff rings with associated feeder vents of variable geometry as shown by previous workers for the 169 kimberlite, the 140/141 kimberlite and the Star kimberlite. The domal tephra cone geometry is preserved due to burial by conformable Cretaceous marine mudstones and siltstones and is not an artifact of Quaternary glacial processes.  相似文献   

3.
M.P. Stubley   《Lithos》2004,77(1-4):683-693
Exploration within the Slave craton has revealed clusters of kimberlite intrusions, commonly with internally consistent geochemical and temporal characteristics. Translation diagrams (“Fry analysis”) allow an unbiased geometrical examination of the distance and direction between each kimberlite occurrence and all others in the database. Recurrent patterns are visually accentuated due to the square function in data density. Circular histograms quantify the azimuthal density of kimberlite at various distances. For this study, the database comprises the geographic position of 212 kimberlite occurrences of which 70% are from the Lac de Gras field (LDG). Analyses are presented separately for the LDG data and for all non-LDG data in order to test for regional variations and to avoid overwhelming the craton-scale studies by the high density of LDG data.

Empirical grouping of kimberlite locations results in delineation of five elliptical clusters that encompass all but four kimberlite occurrences. Clusters within the western part of the craton are elongate to the north–northeast and align within a narrow zone (“Western Corridor”). Elsewhere, the clusters are elongate to the northwest or west–northwest and appear to be arranged en echelon within a poorly defined north–northwest trending zone (“Central Corridor”). Geometrical spatial analyses of kimberlite locations highlight the craton-scale pattern of emplacement within the two main corridors. At regional and local scales, individual intrusions are preferentially located towards the west–northwest (ca. 280°) and north–northeast (ca. 015°) of other intrusions, and these orientations are interpreted to reflect upper mantle trends in magma generation. At local scales (10–25 km), kimberlite of the central and southern craton tends to be located to the northeast (ca. 045°), and possibly weakly to the east–northeast (ca. 070°), of other intrusions, and these orientations correspond to major crustal fractures systems. It is proposed that kimberlite emplacement is controlled primarily by the interaction of elongate 280° and 015° source regions with near-surface deviations influenced by crustal fracture systems.

The 015° trend evident at craton, regional, and local scales is parallel to a swarm of alkaline diabase dykes that are concentrated in a ca. 30-km-wide corridor passing through Lac de Gras. A profound spatial association between significantly diamondiferous kimberlite and the margins of the dyke corridor suggests the corridor is the surface expression of a mantle-depth structure. It remains unclear whether the proposed mantle structure coincides with a diamond-rich zone near the base of the lithosphere, or delineates pathways favorable for diamond preservation during emplacement. The linear array of kimberlite within the western craton forms a parallel corridor that may be an analogous mantle structure, but which to date has failed to yield economic diamond concentrations.  相似文献   


4.
Tokapal kimberlite is the only well preserved crater facies kimberlite intruded within sedimentary sequence of Indravati basin in Bastar craton of central India. We present detailed petrographical and whole rock geochemical studies, carried out on ten samples collected from different locations from Tokapal kimberlite to constrain its genesis and also the mantle processes involved in the origin of this earlier characterized Group I kimberlite. Geochemical studies show that only SiO2 content and the mobile trace elements Ba, Sr, and K vary in the crater facies while rest others show restricted range and can be successfully used in evaluating the petrogenetic processes. Very low abundances of Rb (<2 ppm), Sr (<28 ppm), Ba (<52 ppm) and Cs (0.02–3 ppm) are observed which show possible effects of late-stage alteration rather than significant crustal contamination. The LREE enriched REE pattern, absence of positive Eu anomalies and HREE depletion also provide further additional evidence against crustal contamination considerably modifying magma composition. We infer the presence of less enriched (metasomatised) mantle source regions and comparatively greater degrees of partial melting responsible for the genesis of Tokapal kimberlite. Present study also suggests that crater facies Tokapal kimberlite intruding the Indravati basin, Bastar craton has a Group II kimberlite (orangeite) affinity. This finding is important in light of recent identification of Mainpur kimberlites of Bastar craton as orangeites.  相似文献   

5.
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields.  相似文献   

6.
Abstract: Based on previous studies of kimberlite xenoliths and diamond inclusions in this region, macrocrystal garnet was analyzed with the electric microprobe technique (EPMA). The garnet is collected from the Shengli No.1 kimberlite pipe in the Mengyin area of Shandong Province, China. The results indicate that the garnet contains two kinds of multiphase inclusions: one is K-, B-, and Cl-bearing oxygen-free phase, K- and Cl-bearing oxygen-free phase, and volatile-bearing garnet inclusions (in1 and in3); and the other is chlorite, phlogopite, apatite and calcite (in2). It is suggested that the formation of garnet and its inclusions is associated with strongly reduced mantle fluid. Such a fluid was transformed from ultra-deep high-reduction oxygen-free fluid into low-reduction alkaline fluid, and finally into oxidized fluid with low oxygen fugacity. This result confirms that the Mengyin area underwent metamorphism of slightly active deep fluid, and provides evidence for searching diamond by means of indicative minerals.  相似文献   

7.
The Cretaceous age Fort à la Corne (FALC) kimberlite province comprises at least 70 bodies, which were emplaced near the edge of the Western Canadian Interior Seaway during cycles of marine transgression and regression. Many of the bodies were formed during a marine regression by a two-stage process, firstly the excavation of shallow, but wide, craters and then subsequent infilling by xenolith-poor, crater-facies, subaerial, primary pyroclastic kimberlite. The bodies range in size up to 2000 m in diameter but are mainly less than 200 m thick and thus comprise relatively thin, but high volume, pyroclastic kimberlite deposits. Each body is composed of contrasting types of kimberlite reflecting different volcanic histories and, therefore, are considered separately.

The 140/141 kimberlite is the largest delineated body in the province, estimated to have an areal extent below glacial Quaternary sediments in excess of 200 ha. The infilling of the 140/141 crater is complex, resulting from multiple phases of kimberlite. The central part of the infill is dominated by several contrasting phases of kimberlite. One of these phases is a primary pyroclastic airfall mega-graded bed up to 130 m in thickness. The constituents grade in size from very fine to coarse macrocrystic kimberlite, through to a basal breccia. The mega-graded bed is a widespread feature within parts of the body examined to date and at this current stage of evaluation appears to explain a variable diamond distribution within a tested portion of the pipe. A second different phase of kimberlite is interpreted as representing a younger nested crater within the mega-graded bed. Centrally located thicker intersections (>450 m) of this younger kimberlite may indicate a vent for the kimberlite crater. The thickness of the mega-graded bed increases with proximity to the younger kimberlite in the study area.

Macrodiamond minibulk sample grades from the mega-graded bed have been obtained from nine large diameter drill holes, located within the northwest part of the body from an area of 20 ha, which represents approximately 10% of the currently modeled kimberlite outline. Diamond grade increases with depth within the mega-graded bed and also increases, within the same unit, towards the centrally positioned younger kimberlite. Macrodiamond sample grades vary from low at the top of the mega-graded bed, to considerably higher grades near the base. Total sample grade per drill hole varies from moderate near the vent feature to lower grades 200–300 m from the vent feature. Macrodiamond stone frequency measured in stones per tonne shows a pronounced relationship with depth and proximity to the vent feature within the mega-graded bed. There is a strong correlation between depth and increased stones per tonne, and a similar correlation between stones per tonne and proximity to the vent feature. The data supports the emplacement model of the mega-graded bed and, in turn, this information is useful in understanding the macrodiamond distribution within this bed.  相似文献   


8.
K.M. Masun  B.J. Doyle  S. Ball  S. Walker 《Lithos》2004,76(1-4):75-97
The 613±6 Ma Anuri kimberlite is a pipelike body comprising two lobes with a combined surface area of approximately 4–5 ha. The pipe is infilled with two contrasting rock types: volcaniclastic kimberlite (VK) and, less common, hypabyssal kimberlite (HK).

The HK is an archetypal kimberlite composed of macrocrysts of olivine, spinel, mica, rare eclogitic garnet and clinopyroxene with microphenocrysts of olivine and groundmass spinel, phlogopite, apatite and perovskite in a serpentine–calcite–phlogopite matrix. The Ba enrichment of phlogopite, the compositional trends of both primary spinel and phlogopite, as well as the composition of the mantle-derived xenocrysts, are also characteristic of kimberlite. The present-day country rocks are granitoids; however, the incorporation of sedimentary xenoliths in the HK shows that the Archean granitoid basement terrain, at least locally, was capped by younger Proterozoic sediments at the time of emplacement. The sediments have since been removed by erosion. HK is confined to the deeper eastern parts of the Anuri pipe. It is suggested that the HK was emplaced prior to the dominant VK as a separate phase of kimberlite. The HK must have ascended to high stratigraphic levels to allow incorporation of Proterozoic sediments as xenoliths.

Most of the Anuri kimberlite is infilled with VK which is composed of variable proportions of juvenile lapilli, discrete olivine macrocrysts, country rock xenoliths and mantle-derived xenocrysts. It is proposed that the explosive breakthrough of a second batch of kimberlite magma formed the western lobe resulting in the excavation of the main pipe. Much of the resulting fragmented country rock material was deposited in extra crater deposits. Pyroclastic eruption(s) of kimberlite must have occurred to form the common juvenile lapilli present in the VKs. The VK is variable in nature and can be subdivided into four types: volcaniclastic kimberlite breccia, magmaclast-rich volcaniclastic kimberlite breccia, finer grained volcaniclastic kimberlite breccia and lithic-rich volcaniclastic kimberlite breccia. The variations between these subtypes reflect different depositional processes. These processes are difficult to determine but could include primary pyroclastic deposition and/or resedimentation.

There is some similarity between Anuri and the Lac de Gras kimberlites, with variable types of VK forming the dominant infill of small, steep-sided pipes excavated into crystalline Archean basement and sedimentary cover.  相似文献   


9.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   


10.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   

11.
王思琪  郑建平  韩双  王俊烈 《地质学报》2020,94(9):2676-2686
辽南金伯利岩岩区是我国最大的原生金刚石矿产区,该区金刚石主要寄主岩石类型为斑状金伯利岩。橄榄石是金伯利岩中最重要的造岩矿物,根据其结构特征可以分为橄榄石粗晶、橄榄石斑晶以及基质中微细粒三个世代。本文将岩相学特征和前人研究成果相结合,构建辽南斑状金伯利岩岩浆起源、上升、喷发和成岩模型,探讨各世代矿物的形成过程。具体包括:深部交代地幔部分熔融,形成初始碳酸盐岩浆;初始岩浆上升过程中捕获的岩石圈地幔橄榄岩不断溶解(形成橄榄石粗晶),岩浆成分发生改变,成为金伯利岩岩浆;金伯利岩岩浆迅速上升侵位,至地表处爆破喷发,最后冷却固结形成包含粗晶及其他两个世代橄榄石的斑状金伯利岩。  相似文献   

12.
Seismic reflection techniques are, for the first time, used to image a thin, diamondiferous, kimberlite dyke from subcrop to depths greater than 1300 m. Exploration for vertical kimberlite pipes generally utilizes potential field techniques that often fail to reveal subhorizontal or shallow-dipping intrusions. In contrast, seismic reflection methods are well suited for imaging targets with this geometry. Therefore, in order to evaluate seismic reflection as a tool for subhorizontal kimberlite dyke/sill exploration and mine planning, a feasibility study and subsequent seismic survey were undertaken on the diamondiferous Snap Lake dyke (Northwest Territories, Canada). A substantial drilling program has mapped the dyke as a gently dipping sheet that averages 2–3 m in thickness. The detailed structural and composition data available at Snap Lake provides a unique opportunity to test reflection techniques on a well-sampled deposit. The feasibility study involved measuring P-velocities and densities of cores drilled from the kimberlite and host rocks. These data were used to model reflection amplitudes, evaluate resolution limitations, and determine the acquisition parameters for the reflection survey. Two 2-D lines were acquired that provide comparative datasets for different sources (explosive and vibroseis) and ground types (land and lake ice). In addition, the exploration-scale survey incorporated high fold (40–260 nominal) and long offsets (3260 m). The explosive-source profile recorded on land yielded a superb image of the dyke from depths of 60 m to more than 1300 m over a lateral distance of 5700 m. The seismic image correlates well with adjacent drill hole data and adds considerable detail to the topography of the kimberlite sheet determined by drilling. The vibroseis source also imaged the dyke, but only when sources and geophones were on land; the dyke was not imaged beneath the ice due to reverberation and attenuation effects. The frequency response and unusually strong reflection amplitudes from the dyke indicate the importance of tuning effects and multiples for this type of target and acquisition environment. Apparent correlations between reflection amplitudes and dyke structure (e.g., thickness, feathering, 3-D geometry) suggest that seismic reflection data may be valuable for guiding drilling programs. The results demonstrate that, in the appropriate situation, seismic methods have great potential for use in kimberlite exploration, subsurface mapping, and detailed imaging for mine development purposes.  相似文献   

13.

The Nxau Nxau kimberlites in northwest Botswana belong to the Xaudum kimberlite province that also includes the Sikereti, Kaudom and Gura kimberlite clusters in north-east Namibia. The Nxau Nxau kimberlites lie on the southernmost extension of the Congo Craton, which incorporates part of the Damara Orogenic Belt on its margin. The Xaudum kimberlite province is geographically isolated from other known clusters but occurs within the limits of the NW-SE oriented, Karoo-aged Okavango Dyke Swarm and near NE-SW faults interpreted as the early stages of the East African Rift System. Petrographic, geochronological and isotopic studies were undertaken to characterise the nature of these kimberlites and the timing of their emplacement. The Nxau Nxau kimberlites exhibit groundmass textures, mineral phases and Sr-isotope compositions (87Sr/86Sri of 0.7036 ± 0.0002; 2σ) that are characteristic of archetypal (Group I) kimberlites. U-Pb perovskite, 40Ar/39Ar phlogopite and Rb-Sr phlogopite ages indicate that the kimberlites were emplaced in the Cretaceous, with perovskite from four samples yielding a preferred weighted average U-Pb age of 84 ± 4 Ma (2σ). This age is typical of many kimberlites in southern Africa, indicating that the Xaudum occurrences form part of this widespread Late Cretaceous kimberlite magmatic province. This time marks a significant period of tectonic stress reorganisation that could have provided the trigger for kimberlite magmatism. In this regard, the Nxau Nxau kimberlites may form part of a NE-SW oriented trend such as the Lucapa corridor, with implications for further undiscovered kimberlites along this corridor.

  相似文献   

14.
金伯利岩是化学成分、矿物组成和结构多变的混杂岩,极易发生蚀变,因此对金伯利岩全岩及各种矿物进行测年的方法很难确定金伯利岩的侵位年龄,且数据结果差别很大。通过分析蒙阴坡里金伯利岩带与辉绿岩的侵入关系,以及辉绿岩锆石U-Pb测年,结合辉绿岩与上覆灰岩的接触关系及金刚石砂矿储集层与已知金刚石原生矿的关系,确定辉绿岩脉的侵位时代为中生代燕山晚期,证实坡里金伯利岩带形成时代为中生代燕山晚期而非加里东期。  相似文献   

15.
The Archaean-Proterozoic Dharwar craton has many recorded occurrences of diamondiferous kimberlites. Reports of kimberlite emplacement in parts of the tectonically complex eastern Dharwar craton and a significant density contrast between kimberlites and the host peninsular gneisses motivated us to conduct gravity studies in the Narayanpet-Irladinne area of the eastern Dharwar craton. This region is contiguous with the Maddur-Narayanpet kimberlite that lies to its north, while the river Krishna lies to its south. From observed association of reported kimberlites in the Maddur-Narayanpet field with subsurface topography of the assumed three-layer earth section obtained by Bouguer gravity modelling, we developed a subsurface criterion for occurrence of kimberlites in the present study area. Using this criterion, five potential zones for kimberlite localization were identified in the Narayanpet-Irladinne region, eastern Dharwar craton.  相似文献   

16.
Discrete eruptive events of the Star kimberlite, Saskatchewan, Canada have been classified into five distinctive clusters using statistical methods applied to whole rock geochemical data. The data set consists of 270 kimberlite samples from 38 drill holes that were analysed for whole rock major- and trace-element geochemistry. The data set was analysed by multivariate statistical techniques after a log-ratio transformation, including principal component analysis and linear discriminant analysis. Data analysis using principal component analysis recognized five distinct classes, confirmed by petrographic study, which correspond to unique mineralogical compositions. Based on relationships from detailed drill core logging results, these five geochemical classes are the Cantuar, Pense, early Joli Fou (eJF), mid Joli Fou (mJF) and late Joli Fou (lJF) equivalent age eruptive phases of the Star kimberlite. Subsequent statistical analysis utilizing linear discriminant analysis supports the distinctions between the classes. For the four kimberlite eruptive phases (Pense, early Joli Fou, mid Joli Fou and late Joli Fou) for which there is macrodiamond data from bulk sampling, there is an excellent correlation between the amount of lithospheric mantle contamination (as defined by the geochemistry) and the diamond grade.  相似文献   

17.
Study of faults and secondary mineralization of host rocks of diamond-bearing kimberlites yields important data for local prediction of kimberlite bodies. Of special methodological interest are exploration data on deposits where the study of host rocks is based on a dense observation network. Factual material for this paper was collected from cores of all inclined exploration boreholes of the Maiskoe diamond deposit found in the Nakyn field in Yakutia in 2006. The paper shows a nonuniform distribution of tectonic deformations, stringer mineralization, O and C isotopes of calcite, and CO2 content of Lower Paleozoic host carbonate rocks of kimberlites. Our data agree with different diamond potentials of two areas of the Maiskoe kimberlite body, which can be used to search for and explore deposits.  相似文献   

18.
辽宁瓦房店地区的3个金伯利岩带内的典型金伯利岩管产于NE向、NNE向与近EW向3组构造薄弱带中,并严格受其控制;3组构造交汇部位是今后找寻金伯利岩管的有利部位。构造期次对该区50号岩管具有明显控制作用:早期近EW向挤压破碎带为金伯利岩管的导矿构造;中期NE向断裂为控矿构造;晚期NNE向断裂、NW向断裂,对金伯利岩体起破坏作用。50号岩管及其周边金伯利岩体与构造盆地具有较明确的关联性;野外调查表明,50号岩管周边也曾发生过由E向W方向(或由SE向NW方向)的水平运动,且三维建模显示现在50号岩管不是岩体的根部,应在其东部或东南部寻找可能的剩余部分。  相似文献   

19.
Diamond-bearing kimberlites in the Fort à la Corne region, east–central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U–Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.  相似文献   

20.
Titanoclinohumite, titanochondrodite, and associated Na-bearing tremolite occurring as crystal fragments in the Buell Park kimberlite are not likely crystallization products of a kimberlite magma. They more likely formed as phases in hydration assemblages of peridotite at temperatures below 700 ° C and pressures below 18 kbar. The crystals were dispersed in kimberlite as rock fragments were comminuted during transport to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号