首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
After the Variscan Cycle, the global tectonic framework underwent three major adjustments. The first occurred in the Late Triassic-initial Jurassic, the second in the Late Jurassic-early Early Cretaceous and the third in the Late Cretaceous-Eogene. On that basis, the post-Variscan tectonic history is divided into three tectonic cycles——the Indosinian, Yanshanian and Himalayan Cycles. The post-Neocom(k_1~1) andpre-Aptian(k_1~2) tectonic movement marks the end of the Yanshanian orogeny in eastern China and the initiation of the subduction of the Tethyan ocean in western China and represents the boundary between the Yanshanian and Himalayan Tectonic Cycles.  相似文献   

2.
Tectonic Evolution of the Himalayan Collision Belt   总被引:5,自引:0,他引:5  
This paper discusses the tectonic divisions of the Himalayan collision belt anddeals with the tectonic evolution of the collision belt in the context of crustal accretion in thefront of the collision belt, deep diapirism and thermal-uplift extension and deep material flow-ing of the lithosphere-backflowing. Finally it proposes a model of the tectonic evolution-progressive intracontinental deformation model-of the Himalayan belt.  相似文献   

3.
4.
The Taiwan Strait is a part of the continental-margin rift of eastern China, which can tectonically be divided into the Taiwan Strait basin, southwestern Taiwan basin and Penhu-Beigang uplift. The basins are structurally semi-graban down-faulted ones in character. The Cretaceous-Cenozoic sedimentary strata in the basins have a maximum thickness of over 10,000 m. The formation and development of the Taiwan Strait rift were not only affected by both the East China Sea basin and South China Sea basin but also closely related to the Central Range collision orogen of Taiwan. In the Cenozoic, the Taiwan Strait area experienced, under the influence of a multiple of tectonic mechanisms, three stages of evolution: poly-centre downfault-ing, down warping-faulting and foreland basin formation. The depositional centres of the basins migrated from west to east during the Tertiary, resulting in the thinning of the Palaeogene strata from west to east but that of the Neogene in the reverse direction. All this determine  相似文献   

5.
A comprehensive study has been carried out to subdivide and correlate the Upper Carboniferous and Permian sedimentary successions in the Junggar basin based on outcrops and drilling and geophysical data. The study results, combined with geological analyses of the basin's periphery and the basement, as well as studies of the sedimentary rocks within the basin, the unconformities, tectonic geometry, kinematics and geodynamics, lead to the conclusion that the Junggar basin was characterized by the development of foreland basin systems during the Late Carboniferous and Permian. During that period, three foreland basin systems were developed: (1) the northwest foreland basin system, which trended nearly north-south from Mahu to the Chepaizi Palaeo-mountain during its early stage of development and thus it was also referred to as the west foreland basin system; (2) the Karamaili foreland basin system in the east and (3) the Northern Tianshan foreland basin system in the south. These systems are different in s  相似文献   

6.
This paper summarizes the Late Palaeozoic. Indosinian and Yanshanian palaeotectonic settings in theperi-Pacific region of East Asia. On that basis, the Himalayan crustal movement in the region is divided intothe early and late tectonic stages and two principal tectonic phases. From the ocean to the continent, 5 giganticHimalayan formation-deformation belts are distinguished; they are the Northwest Pacific trench-island arcbelt. the Northwest Pacific marginal sea basin bell. the East China Sea-northern South China Seacontinental-shelf down-faulted belt. the East Asian epicontinental rift belt. and the East Asian intracontinentalrift belt. The Early and Late Himalayan tectonic evolution is dealt with. Finally the state of the Himalayan re-gional stress field and its evoution in the region are discussed. It is considered that the mechanism of their for-mation is closely related to the continent-ocean and surface-deep earth interaction.  相似文献   

7.
Tectonic Evolution and Petroleum Systems in the Junggar Basin   总被引:1,自引:0,他引:1  
The Junggar basin is located in the northern part of Xinjiang of China. It is part of the Kazakstan plate, surrounded by the Paleozoic folded mountains: the Halaart, Zayier and Chepaizi Mountains in the northwest, the Qingelidi and Karamaili Mountains in the northeast, and the Tianshan Mountains in the south. In different evolution stages, the basin's types are different, and the stratigraphy and deposition are also different. From the Carboniferous to Tertiary the basin has in turn gone through rift basin, collision foreland basin, intraplate depression basin and regenerated foreland basin. Based on an analysis of thermal evolution history and buried history of the source rocks, three major periods of oil generation are found in the basin. According to the characteristics of source rock distribution, evolution, oil-source correlation, structure and multi-phase and mixed pools, the Junggar basin could be divided into 4 composite petroleum systems. Due to the variation in sedimentary facies, difference in  相似文献   

8.
With increasing high-quality geological and geophysical data it becomes clear that seismicity of the continents is characterized by linear patterns which are closely associated with tectonic features. The aim of this paper is to give reasonable interpretation for the earthquake distribution in the contiguous continent of the United States. Seismic lines and earthquake concentrated zones are defined, which reflect the characteristics of the continental seismotectonics. Similarities and differences in seismotectonics between the continental part of China and the contiguous continent of US are analysed. It is demonstrated that the spatial distribution of earthquakes can provide the information of the active structures in the earth's crust. The authors consider that the patterns of continental seismotectonics are not only controlled by the pre—existing tectonic frameworks and the current boundary dynamic conditions, but also possibly affected by dynamic factors of global tectonics at a higher level.  相似文献   

9.
Nekrasov  G. E. 《Doklady Earth Sciences》2019,489(2):1391-1395
Doklady Earth Sciences - In this work we considered the origin of the Verkhoyansk–Kolyma, Chukotka, and Southern Anyui belts, which are part of the Verkhoyansk–Chukotka folded area. It...  相似文献   

10.
11.
This paper deals with deformation textures and fabrics of mantle-derived xenoliths and dislocation microstructures of olivine in the upper mantle in the Penghu Islands, Taiwan. According to the calculation of the chemical composition of xenolith minerals (pyroxene), the equilibrium temperatures and pressures were 986-1116@ and 1.50-2.60 GPa, respectively. Deformation events in the upper mantle may fall into three sequences' (1) uniform steady-state flow deformation with high temperatures and low stresses, (2) shear flow deformation with high temperatures and relatively high stresses on diapiric margins of the upper mantle, and (3) extraction deformation of {110} glide bands with low temperatures and high strain rates. Deformation events and thermal structure of the upper mantle in the study area show that eastern Fujian and the Penghu Islands are characterized by very similar rheological properties of the upper mantle. Volcanism of basalts in the Penghu Islands is related to hot spots of the upper mantl  相似文献   

12.
13.
The northern margin of the Alxa block is the junction of a tectonic units. Four first-order tectonic units are distinguished: 1. the Yagan structural zone characteristic of an immature island arc; 2. the Zhusileng-Hangwula structural zone, which was a passive continental margin in the Early Palaeozoic and was transformed into an active continental margin in the Late Palaeozoic;3. the Shalazha structural zone characteristic of a mature island arc; 4. the Nuru-Langshan structural zone, which was a Proterozoic orogenic belt and later evolved into an extensional transtional crust in the Palaeozoic. The above-mentioned tectonic units differ remarkably in sedimentary formations, magmatic rock associations, metamorphism and geochemistry and are bounded by faults between one another.  相似文献   

14.
The Qinling Mountains separating the northern from the southern China plate is a key region for the study of structural evolution of eastern Asia. It is composed of the Palaeozoic fold belt in its northern part and the Variscan and Indosinian fold belts in its southern part. The evolution of the former is marked by the closure of a northward subducting oceanic basin in the early stage, followed by southward obduction of ophiolites and intracontinental thrusting during the Variscan; whereas that of the latter is represented by intracontinental, shallow crustal deformation on the basis of a large-scale detachment structure(with a horizontal slip of at least of 100 km). Since the late Palaeozoic, however, both of the belts have been cut by a series of east-west sinistral strike-slip faults.  相似文献   

15.
This study focuses on the zircon U–Pb geochronology and geochemistry of the Bairiqiete granodiorite intrusion(rock mass) from the Buqingshan tectonic mélange belt in the southern margin of East Kunlun. The results show that the zircons are characterized by internal oscillatory zoning and high Th/U(0.14–0.80), indicative of an igneous origin. LA–ICP–MS U–Pb dating of zircons from the Bairiqiete granodiorite yielded an age of 439.0 ± 1.9 Ma(MSWD = 0.34), implying that the Bairiqiete granodiorite formed in the early Silurian. Geochemical analyses show that the rocks are medium-K calc-alkaline, relatively high in Al2O3(14.57–18.34 wt%) and metaluminous to weakly peraluminous. Rare-earth elements have low concentrations(45.49–168.31 ppm) and incline rightward with weak negative to weak positive Eu anomalies(δEu = 0.64–1.34). Trace-element geochemistry is characterized by negative anomalies of Nb, Ta, Zr, Hf and Ti and positive anomalies of Rb, Th and Ba. Moreover, the rocks have similar geochemical features with adakites. The Bairiqiete granodiorite appears to have a continental crust source and formed in a subduction-related island-arc setting. The Bairiqiete granodiorite was formed due to partial melting of the lower crust and suggests subduction in the Buqingshan area of the Proto-Tethys Ocean.  相似文献   

16.
Based on the study of folds and related conjugate shear joints, the tectonic stress fields of the Urumqi-Usu region to the north of the North Tianshan Mountains have been reconstructed. Furthermore the author discussed the tectonic movements and their dynamic features. The early tectonic movement in the investigated region occurred from the end of the Late Jurassic to the initial stage of the Early Cretaceous, with the maximum (tensile) and minimum (compressional) principal stress trajectories in the tectonic stress field being in E-W and S-N directions respectively; the late tectogenesis took place from the end of the Early Pleistocene to the initial Middle Pleistocene, with the maximum and minimum principal stress trajectories in the late stress field striking in WNW and NE-NNE directions respectively. Through computer-aided simulated calculation by the finite element method and analysis of geological structure, it has been ascertained that the early tectogenesis is a nearly N-S compressive movement and the late one a NE to nearly N-S compressive movement with reverse shear. The dynamic force which caused the tectogeneses came from the movement of the southern major fault, i.e. the North Tianshan Mountains.  相似文献   

17.
The Middle Proterozoic Chartai Group separated by two unconformities consists of three depositional se-quences: the Shujigou Formation-Zenglongchang Formation (DS Ⅰ), the Agulugou Formation (DS Ⅱ), andthe Liuhongwan Formation (DS Ⅲ). The carbonate platform and back-platform basin are the basic environ-ment model of the Chartai Group. The syndepositional faults on the oceanward side of the carbonate platformand large-scale slumping in the soft sediments are important marks of facies tracts. The newly establishedZenglongchan uplifting, an epeirogenetic uplifting, plays an important role in the formation of thepalaeogeographic framework of the Chartai Group. The stratigraphic correlation between the Chartai Groupand the Bayan Obo Group is made for the first time by using sequence stratigraphic principle and model estab-lished by P.R. Vail. The Chartai Group, which was deposited on the northern passive continental margin of theNorth China platfom, represents the platform cover.  相似文献   

18.
The Northern Qilian high-pressure metamorphic belt has experienced multiple deformation-metamorphism, which consists of at least four stages.In 550.8-526 Ma, eclogites were formed. High temperature and pressure caused the escape of a large quantity of gas-liquid fluids from rocks while silicate melt was generated. In the late stage, small amounts of CO2 and H2O infiltrating along fractures were introduced.In the formation of glaucophane schist (447-362 Ma), devolatilization reactions were dominated during the subduction-uplift stage of the paleoplate.In the uplift-exhumation stage (400-380 Ma) the increase of internal space of fractures in the rocks favoured fluid infiltration and concentration. These fluids participated in hydration reactions in the retro-metamorphism. The fluids participating in the mineral reactions have the compositions of CaCl2-NaCl-H2O.In subsequent thrusting (<380 Ma), the metamorphic terrain was uplifted to the shallower crust and ductile-shearing deformation took place, which c  相似文献   

19.
During the Paleozoic, the Ordos area in the western North China Plate was located at the intersecting position of microplates and controlled by their interaction. The structural framework in the Ordos area, which underwent transformations in the Ordovician, the Carboniferous and the Permian respectively, was dominated by the alternation of uplift and depression. The transformations of structural framework are utilized as the clues to investigate the microplates' interacting type and its response in the Ordos area. According to the regional structural evolution, the Ordos area is simplified into an isopachous, isotropic and elastic shell model, and under proposed various boundary conditions, three series of numerical simulations corresponding to the three structural transformations are carried out to determine the detailed tectonic constraints. Numerical simulations reveal that the structure of the uplift and depression, which is similar to the actual pattern, develops only under one special boundary condition in each of the three series, indicating that the structural framework responds to the unique tectonic background. The simulation results show that in the Early Paleozoic, the L-shaped paleouplift formed nearby the southwestern corner of the Ordos area because the intensity of the compressions in the southern and western boundaries resulting from the ocean-continent collisions was similar. In the Late Paleozoic, it evolved into continent-continent (or arc-continent) interaction in the southern and northern boundaries; in the preliminary stage of the interaction, since the interface between the North China Plate and the plates on the south and north was narrow, the relative acting force was little and the regional western boundary immobile, and the structural framework in the basin was characterized by the N-S trending slender-waist-shaped uplift; as the interface between the plates expanded gradually, the extrusive force in the southern and northern boundaries of the North China Plate increased, resulting in the paleogeographic divisions showing E-W trending, and, the western boundary of the basin was extruded westward due to the intense compression inducing the local NE trending of paleogeographic division in the central area. The simulation results further reflect that the symmetry of the uplift-depression pattern is restricted by that of the boundary conditions, suggesting that the Paleozoic structural transformations of the Ordos area under boundary constraints accord with the universal physical symmetrical principle.  相似文献   

20.
Doklady Earth Sciences - The large massifs of ancient granitoids of the South Yenisei Ridge are divided into three complexes that differ in the geological, geochemical, and geochronological...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号