首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Climate change has affected the temperature and rainfall characteristics worldwide. However, the changes are not equal for all regions and have localized intensity and must be quantified locally to manage the natural resources. Orissa is an eastern state in India where agricultural activities mainly depends on the rainfall and thus face problems due to changing patterns of rainfall due to changing climate. In the present study, attempts were made to study temporal variation in monthly, seasonal and annual rainfall over the state during the period from 1871 to 2006. Long term changes in rainfall characteristics were determined by both parametric and non-parametric tests. The analysis revealed a long term insignificant decline trend of annual as well as monsoon rainfall, where as increasing trend in post-monsoon season over the state of Orissa. Rainfall during winter and summer seasons showed an increasing trend. Statistically monsoon rainfall can be considered as very dependable as the coefficient of variation is 14.2%. However, there is decreasing monthly rainfall trend in June, July and September, where as increasing trend in August. This trend is more predominant in last 10?year. Based on departure from mean, rainfall analysis also showed an increased number of dry years compared to wet years after 1950. This changing rainfall trend during monsoon months is major concern for the rain-fed agriculture. More over, this will affect hydro power generation and reservoir operation in the region.  相似文献   

2.
Changes in the form of precipitation have a considerable impact on the Arctic cryosphere and ecological system by influencing the energy balance and surface runoff. In this study, station observations and ERA-Interim data were used to analyze changes in the rainfall to precipitation ratio(RPR) in northern Canada during the spring–summer season(March–July)from 1979–2015. Our results indicate that ERA-Interim describes the spring–summer variations and trends in temperature and the RPR well. Both the spring–summer mean temperature [0.4℃–1℃(10 yr)~(-1)] and the RPR [2%–6%(10 yr)~(-1)] increased significantly in the Canadian Arctic Archipelago from 1979–2015. Moreover, we suggest that, aside from the contribution of climate warming, the North Atlantic Oscillation is probably another key factor influencing temporal and spatial differences in the RPR over northern Canada.  相似文献   

3.
1961—2010年云南干湿气候变化   总被引:1,自引:0,他引:1  
纪智荣  黄中艳  谢国清 《气象科技》2013,41(6):1073-1079
利用15个站点1961—2010年日照时数、降水量和平均温度等气候资料,计算云南5个区域各季节相对湿润度指数,分析云南干湿气候变化特征。结果表明,相对湿润度指数可定量、准确地表达云南各区域自然气候干湿程度,能客观反映云南干湿气候的波动变化和区域性差别。20世纪90年代中期以来,云南干季、雨季潜在蒸散量呈增大变化趋势,同期降水量有减小的趋势变化,从而在气候变暖背景下引发云南气候的干旱化趋势。干季各地相对湿润度指数年际波动变化大,年代际差异明显;雨季各地干湿状况年际波动相对较小,且呈现明显的周期性波动变化趋势。云南5个区域的干湿气候变化既有一致性也有差异性:滇中和滇西南比较一致,滇西北与滇东南差异明显,滇西北与滇东北雨季差异突出、干季较为相似。  相似文献   

4.
澜沧江是我国为数不多的跨境河流,流域内多发暴雨、洪水灾害,因此定量、科学地评估澜沧江流域未来全球升温情景下极端降水的变化特征,能够为澜沧江-湄公河沿线国家共同管理流域水资源和抵御自然灾害提供一定的科学指导。文中基于部门间影响模式比较计划(ISI-MIP)下5个全球气候模式降水数据,通过偏差校正增强其在澜沧江流域极端降水的模拟能力,使用降水强度、日最大降水量和强降水量等9个指标评价未来全球升温1.5℃和2.0℃下澜沧江流域极端降水的变化情况,并对结果的不确定性和可信度进行研究,得出以下主要结论:随着全球温度的升高,澜沧江流域年降水和极端降水均呈现增大趋势,其中极强降水量(R99p)升幅最大,升温1.5℃和2.0℃下升幅分别为37%和75%;相对于基准期,全球升温2.0℃下各极端降水指数增幅明显大于升温1.5℃,前者升幅甚至超出后者一倍;未来全球升温情景下,澜沧江流域湿季会变得更湿润,而干季则会更干燥;澜沧江流域降水集中程度会增大,使得流域内洪涝灾害发生的风险增大;ISI-MIP气候模式对澜沧江流域未来极端降水模拟存在较大不确定性,升温2.0℃较升温1.5℃情景下不确定性更大,但相对于基准期,前者极端降水增大的可信度更高。  相似文献   

5.
Daily precipitation and temperature records at 13 stations for the period 1960-2008 were analyzed to identify climatic change and possible effects of urbanization on low-temperature precipitation [LTP, precipitation of ≥ 0.1 mm d^-1 occurring under a daily minimum temperature (Tmin) of ≤ 0℃] in the greater Beijing region (B JR), where a rapid process of urbaniza tion has taken place over the last few decades. The paper provides a climatological overview of LTP in B JR. LTP contributes 61.7% to the total amount of precipitation in B JR in the cold season (November-March). There is a slight increasing trend [1.22 mm (10 yr)^-1] in the amount of total precipitation for the cold season during 1960-2008. In contrast, the amount of LTP decreases by 0.6 mm (10 yr)^-1. The warming rate of Train in B JR is 0.66℃ (10 yr)^-1. Correspondingly, the frequency of LTP decreases with increasing Tmin by -0.67 times per ℃. The seasonal frequency and amount of LTP in southeast B JR (mostly urban sites) are 17%-20% less than those in the northwestern (rural and montane sites). The intensity of LTP for the urban sites and northeastern B JR exhibited significant enhancing trends [0.18 and 0.15 mm d^- 1 (10 yr)^- 1, respectively]. The frequency of slight LTP (〈0.2 mm d^-1) significantly decreased throughout B JR [by about -15.74% (10 yr)^-1 in the urban area and northeast B JR], while the contribution of the two heaviest LTP events to total LTP amount significantly increased by 3.2% (10 yr) ^-1.  相似文献   

6.
Central America has high biodiversity, it harbors high-value ecosystems and it??s important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it??s unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Ni?o events in recent decades that adversely affected species in the region.  相似文献   

7.
基于SPEI指数的河北省南部夏玉米生长季干旱特征分析   总被引:1,自引:0,他引:1  
利用河北省南部8个气象站点1962—2018年的逐月气温、降水量数据,采用标准化降水蒸散指数(SPEI),通过小波分析、Mann-Kendall检验等方法,分析了河北省南部夏玉米生长季(6—9月)干旱变化特征以期为干旱灾害的监测、预报预警及防御提供理论依据。结果表明:夏玉米苗期干旱发生频率为31.5%,1966年后苗期气候呈湿润化趋势,在1968和2009年附近可能发生了气候湿润化的突变,整个分析期(1962—2018年)干湿变化包含13~18a、5~8a周期振荡;夏玉米穗期干旱发生频率为40.3%,2006年后穗期气候呈持续干旱化趋势,在1980和1997年附近可能发生了气候干旱化的突变,整个分析期干湿变化包含15~22a、6~10a周期振荡;夏玉米花粒期干旱发生频率为29.8%,1989年后花粒期气候呈持续干旱化趋势,可能在1992和2002年附近发生了气候干旱化的突变;夏玉米生长季干旱发生频率约为30%,生长季气候总体呈干旱化趋势,特别是1997年后持续干旱化,可能在1996年附近发生了气候干旱化的突变。  相似文献   

8.
1961-2007年云南干季干湿气候变化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
从影响自然干湿变化的多种因素出发,基于云南省15个站点1961-2007年干季9项气候要素实测数据,应用因子分析法研究云南干季干湿气候变化特征。提取了表征干季干湿气候变化的3个公共因子,阐明了云南干季干湿气候变化特点和原因。结果显示:1960年代以来5个年代干湿气候变化明显,变化原因各异,总变化趋势是湿度缓降、干旱强度渐强;1960-1980年代都处于中等干旱偏弱态势,进入1990年代后降水时间分布不均和气候变暖导致干季气候持续典型偏干;干季总降水量变化趋势有不确定性,年代际变化明显、变率不大,但其年际变化突出造成干季干湿状况年际波动大。  相似文献   

9.
Climate change has the potential to reduce water availability in West Africa. This study aims to quantify the expected impact of increased greenhouse gases (GHGs) on hydroclimatology of Niger River Basin (NRB). Boundary data from a general circulation model are used to force a regional climate model, to produce dynamically downscaled hydroclimatic variables of NRB under present-day (PRS) and future climate scenarios. The data were further analyzed to detect changes in atmospheric and surface water balance components and moisture recycling ratio (β). The results show that elevated GHGs (under A1B scenario) would produce a drier climate during the rainy season and a wetter climate during the dry season. A warmer climate over NRB in all months was projected. Highest temperature increase of 3 °C occurs about 14°N in May and June, and the smallest increase of 0.5 °C occurs below 8°N in wet-dry transition period. Evaporation reduces during wet season and increases during the dry periods. Humidity increases by 2 % in the dry season, but decreases by 2–4 % in the wet season. Maximum change in moisture influx of 20.7 % and outflux of 20.6 % occur in June and July, respectively. β is projected to decrease in 75 % of the months with biggest relative change of ?18.4 % in June. The projected decrease in precipitation efficiency (ρ) during the wet season reaches ?20.3 % in June. For PRS run, about 66 % of the available atmospheric moisture in NRB precipitates between June and September, of which around 21 % originates from local evaporation. The result suggests that under enhanced GHGs, local evaporation will contribute less to atmospheric moisture and precipitation over the basin. Projected changes in rainfall and streamflow for Upper Niger and Benue sub-basin are significantly different during the wet season.  相似文献   

10.
Based on RegCM4, a climate model system, we simulated the distribution of the present climate (1961-1990) and the future climate (2010-2099), under emission scenarios of RCPs over the whole Pearl River Basin. From the climate parameters, a set of mean precipitation, wet day frequency, and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21st century. Meanwhile the return values of precipitation intensity with an average return of 5, 10, 20, and 50 years are also used to assess the expected changes in precipitation extremes events in this study. The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5. The annual, spring and winter average precipitation decreases while the summer and autumn average precipitation increases. The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase. The wet day percentiles (q90 and q95) also increase, indicating that precipitation extremes intensity will increase in the future. Meanwhile, the 5-year return value tends to increase by 30%-45% in the basins of Liujiang River, Red Water River, Guihe River and Pearl River Delta region, where the 5-year return value of future climate corresponds to the 8- to 10-year return value of the present climate, and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080s under RCP8.5, which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.  相似文献   

11.
利用青藏高原气象台站逐日观测资料,采用候雨量稳定通过临界阈值的方法对高原雨季起讫期进行客观定量划分,在此基础上,进一步分析增暖背景下雨季起讫期和雨季降水演变特征,并对比增暖前后高原雨季起讫期及不同等级降水的响应特征。结果表明:青藏高原雨季平均开始期为5月第3候、结束期为9月第6候、共持续28候;青藏高原雨季降水集中期为6月中旬至9月中旬,并在7月上旬、下旬和8月下旬出现3个峰值,7月上旬为雨季主峰期;1961—2017年雨季降水量总体呈增加趋势,雨季降水量自东南向西北逐渐递减,高值区位于青藏高原东南部的横断山脉;青藏高原雨季气候于1997年开始增暖,增暖前后雨季起讫期区域间差异较大,增暖后雨季开始期在青藏高原西部明显推迟,其余地区均提前,结束期则总体推迟;气候增暖后中雨以上日数增多,雨季降水极端性显著增强且空间覆盖范围明显扩大。  相似文献   

12.
Sahelian rainfall has recorded a high variability during the last century with a significant decrease (more than 20 %) in the annual rainfall amount since 1970. Using a linear regression model, the fluctuations of the annual rainfall from the observations over Burkina Faso during 1961–2009 period are described through the changes in the characteristics of the rainy season. The methodology is then applied to simulated rainfall data produced by five regional climate models under A1B scenario over two periods: 1971–2000 as reference period and 2021–2050 as projection period. As found with other climate models, the projected change in annual rainfall for West Africa is very uncertain. However, the present study shows that some features of the impact of climate change on rainfall regime in the region are robust. The number of the low rainfall events (0.1–5 mm/d) is projected to decrease by 3 % and the number of strong rainfall events (>50 mm/d) is expected to increase by 15 % on average. In addition, the rainy season onset is projected by all models to be delayed by one week on average and a consensus exists on the lengthening of the dry spells at about 20 %. Furthermore, the simulated relationship between changed annual rainfall amounts and the number of rain days or their intensity varies strongly from one model to another and some changes do not correspond to what is observed for the rainfall variability over the last 50 years.  相似文献   

13.
枯季是水旱、水生态和水资源问题的重要时期,枯季径流的变化直接影响着河流生态和流域水资源管理。基于中国网格气象数据和主要江河枯季径流资料,初步分析了1961—2018年中国气候变化趋势和主要江河枯季径流演变特征与成因。结果表明,全国枯季平均气温显著上升,北方地区升温较早,南方地区2001—2018年升温明显。全国约84%的地区枯季降水有增加趋势,其中约42.2%的地区增加显著;全国枯季降水呈现西北、东北和东南显著增加,中部变化不显著格局。黄河中游和海河枯季径流下降显著,2001—2018年黄河中游枯季径流较1961—1980年减少了34%,同时期海河流域枯季径流量减少幅度均超过80%;松花江上游和长江流域枯季径流增加显著,2001—2018年松花江上游枯季径流量增加了约67%,长江流域枯季径流量增加了约16%。枯季降水增加主导了松花江上游、辽河、淮河、长江以及珠江枯季径流的增加;气温的显著上升对黄河中游和海河等地枯季径流有显著负向作用;人类活动是松花江中游、黄河和海河枯季径流下降的主要影响因素。尽管全国枯季降水的增加对于缓解流域生态和水资源问题有积极作用,但人类活动和气温显著上升加速了水资源的消耗,加大了流域水资源脆弱性。  相似文献   

14.
We examined if climate change in two dry ecosystems—Mediterranean (DME) and Semiarid (SAE)—would cause substantial reduction in the production of annual vegetation. Field measurements and computer simulations were used to examine the following six climate change scenarios: (1) rainfall amount reduction; (2) increases of 10 % in annual evaporation rate and 5 % in annual temperature; (3) increase in magnitude of rainfall events, accompanied by reductions in frequency and seasonal variation; (4) postponement of the beginning of the first rainfall event of the growing season; (5) long dry spells during the growing season; and (6) early ending of the growing season. The results revealed the following outcomes. a) Reduction by 5–35 % in annual rainfall amount did not significantly affect productivity in the DME, but a large (25–35 %) decrease in rainfall would change vegetation productivity in the SAE and lead to a patchier environment. b) Similar results were observed: when temperature and evaporation rate were increased; when the magnitude of rainfall events increased but their frequency decreased; and during a long mid-season dry spell. c) In both ecosystems, changes in the temporal distribution of rainfall, especially at the beginning of the season, caused the largest reduction in productivity, accompanied by increased patchiness. d) Long-term data gathered during the last three decades indicated that both environments exhibited high resilience of productivity under rainfall variability. These results imply that the response of dry ecosystems to climate change is not characterized by a dramatic decrease in productivity. Moreover, these ecosystems are more resilient than expected, and their herbaceous productivity might undergo drastic changes only under more severe scenarios than those currently predicted in the literature.  相似文献   

15.
Dissimilarities in temperature trends in space and time over the Indian region have been examined to look for signatures of aerosols’ influence. Separate temperature time series for North and South India were constructed for dry (November–May) and wet (June–October) seasons. Temperature trend for the entire period 1901–2007 and different subperiods of 1901–1950, 1951–1990, 1971–2007, and 1991–2007 have been examined to isolate the aerosol and other greenhouse gas influences on temperatures. Maximum (daytime) temperatures during dry season corresponding to North and South India show significant warming trend of 0.8 and 1.0?°C per hundred years during the period 1901–2007, while minimum temperature shows nebulous trend of 0.2 and 0.3?°C per hundred years over North and South India, respectively. During the wet season, maximum temperature shows nearly half of dry season maximum temperature warming trend. However, asymmetry is observed in dry season maximum temperature trend during post-industrial period 1951–1990 wherein the North/South India shows decreasing/increasing trends, while during the recent period 1991–2007 trends are uniformly positive for both the regions. Spatial and temporal asymmetry in observed trends clearly point to the role of aerosols in lowering temperature trends over northern India. Atmospheric aerosols could cause a negative climate forcing that can modulate the regional surface temperature trends in a significant way. As this forcing acts differentially on day and night temperatures, trends in diurnal temperature range (DTR) provide a direct assessment of impacts of aerosols on temperature trends. Time series of diurnal temperature range for dry and wet seasons have been examined separately for North and South India. Over North India, the DTR for dry season has increased gradually during the period 1901–1970 and thereafter showed decreasing trend, while trends in temperature range over Southern India were almost opposite in phase with North India. The aerosol and greenhouse gases seem to play an important role in the spatial and temporal variability of temperature range over India.  相似文献   

16.
Summary In dry farming areas, where rainfall is the only source of water for crops, changes in both quantity and distribution of rainfall during the year could affect the economy of an area. Inter-annual variability makes it difficult to assess rainfall variability, especially in areas with Mediterranean climate. In this paper, interannual rainfall variations in the Alt Penedès region were evaluated using 24-h rainfall records at Vilafranca del Penedès (1889–1999) and at Sant Sadurni d’Anoia (1960–1999). The distribution patterns during the year and their changes over the time were also analysed. Rainfall data were normalised and the values corresponding to the percentiles 0.1, 0.25, 0.5, 0.75 and 0.9 were calculated to analyse whether they were very dry, dry, normal, wet and very wet periods. Annual rainfall and the rainfall recorded during the main rainfall periods during the year and its trend were analysed. Annual rainfall did not show a clear tendency, although during the last decade reduced interannual variability occurred. The percentage of dry years did not increase but the percentage of wet and very wet years decreased. During the last decade, an increase of dry spring seasons andwet autumn seasons was observed, even in normal or wetyears. These changes could affect the timing of whencrops receive water and could therefore affect their yields. Received May 31, 2000/Revised February 26, 2001  相似文献   

17.
利用中国科学院西北生态环境资源研究院玛曲土壤温湿观测网2008-2009年、2013-2014年数据验证了3套再分析资料ERA-Interim,CFSR(Climate Forecast System Reanalysis)和JRA-55(Japanese 55-year Reanalysis)在黄河源区的适用性,结合中国气象数据网玛曲气象站1980-2014年观测资料与CLM4.5(Community Land Model 4.5)进一步分析了黄河源区近35年气候变迁、土壤温湿分布和变化,结果表明:CFSR能够较好地描绘黄河源区土壤湿度变化,ERA-Interim对于土壤温度刻画能力更强,JRA-55效果较差;35年来气温、土壤温湿总体呈上升趋势且发生突变;近年来10 cm土壤温湿有暖干化趋势,降水量稍有增加,土壤冷季冻结周期变短,暖季持续时间拉长;CLM4.5模拟精度高,能够较好地刻画源区土壤温湿变化细节,两湖及黄河周边暖季为冷湿中心,冷季为暖干中心。  相似文献   

18.
Regional and local trends in rainfall intensity, frequency, seasonality, and extremes were analyzed in the central Mekong Basin in continental Southeast Asia over the period 1953–2004 using the modified Mann–Kendall test, accounting for long-term persistence and the regional average of the Kendall’s statistic. Regionally significant and insignificant wetting tendencies of the dry and wet seasons, respectively, were found to be consistent with rainfall alterations in the neighboring southeastern part of China and attributed by previous studies to the weakening of the East Asia Summer and Winter Monsoons. These observations suggest the existence of causal links between global warming and rainfall changes observed in continental Southeast Asia. Although these changes most likely did not alter agricultural production, they confirm the need to account for climate change impacts when assessing water resources availability in this region under rapid economic development.  相似文献   

19.
近50年新疆温度降水配置演变及其尺度特征   总被引:9,自引:0,他引:9  
戴新刚  任宜勇  陈洪武 《气象学报》2007,65(6):1003-1010
用小波多分辨分析方法研究近20年新疆出现的高温多雨型气候的时间尺度特征及其演变趋势。新疆近55年温度和降水的小波功率谱分析显示,二者在年际尺度上都有2—4和6—8 a的显著周期分量,在年代际尺度上有准16 a周期;但它们的时间演变和时间平均谱都存在差异,导致温度和降水配置演变比较复杂,呈现非平稳性。正交小波分解证实,温度和降水年际变化的高频部分具有显著的负相关,除个别几年外几乎都是高温少雨或低温多雨配置;在年际变化的低频部分,即6—8 a尺度部分,高温少雨/低温多雨及高温多雨/低温少雨配置交替出现,55a平均而言二者相关性不显著。在年代际以上尺度,二者的能量主要集中在约50 a以上尺度部分,16—32 a尺度部分方差贡献很小。在降水和温度时间序列中去除趋势后发现,50 a以上尺度部分具有稳定的高温多雨/低温少雨配置。因此,近20年新疆高温多雨型气候的出现主要是二者50—60 a尺度成分的正位相和线性增加趋势部分叠加形成的,其中降水主要是年代际尺度成分的贡献,温度主要是线性增暖趋势即全球变暖的影响结果。  相似文献   

20.
Large-scale conversion of tropical forests into pastures or annual crops will likely lead to changes in the local microclimate of those regions. Larger diurnal fluctuations of surface temperature and humidity deficit, increased surface runoff during rainy periods and decreased runoff during the dry season, and decreased soil moistrue are to be expected.It is likely that evapotranspiration will be reduced because of less available radiative energy at the canopy level since grass presents a higher albedo than forests, also because of the reduced availability of soil moisture at the rooting zone primarily during the dry season. Recent results from general circulation model (GCM) simulations of Amazonian deforestation seem to suggest that the equilibrium climate for a grassy vegetation in Amazonia would be one in which regional precipitation would be significantly reduced.Global climate changes probably will occur if there is a marked change in rainfall patterns in tropical forest regions as a result of deforestation. Besides that, biomass burning of tropical forests is likely adding CO2 into the atmosphere, thus contributing to the enhanced greenhouse warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号