首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文利用1948-2010年Global Land Data Assimilation System(GLDAS)NOAH陆面模式资料、GPCC月平均降水资料和NCAR/NCEP全球月平均再分析资料,采用滤波、距平合成和线性相关等方法,分析了El Niño成熟位相冬季欧亚大陆积雪异常的分布特征,研究了关键区积雪融化对后期春、夏季土壤湿度、土壤温度以及大气环流与降水的影响,揭示了El Niño事件通过关键区积雪储存其强迫信号并影响东亚夏季气候异常的机制和过程.主要结论如下:El Niño成熟阶段冬季伊朗高原、巴尔喀什湖东北部和青藏高原南麓区域是雪深异常的三个关键区,这些区域的雪深、雪融和土壤湿度有明显的正相关;这三个关键区雪深异常通过春季融雪将冬季El Niño信号传递给春、夏季局地土壤湿度,通过减少感热通量和增加潜热通量对大气环流产生影响;春末夏初伊朗高原土壤湿度异常对东亚夏季气候异常的影响最大,其引起的降水异常与El Niño次年夏季降水异常分布基本一致,春夏季青藏高原南麓和巴尔喀什湖附近土壤湿度也都明显增加,均会对中国华北降水增加有显著正贡献.总之,在利用El Niño事件研究和预测东亚夏季气候异常时,还应考虑关键区雪深异常对El Niño信号的存储和调制作用.  相似文献   

2.
近百年来南海北部珊瑚生长率与海面温度变化的关系   总被引:15,自引:1,他引:15  
从西沙和海南岛南部海区钻取的5个滨珊瑚(Porites)岩芯,研究其逐年生长率变化及与海面温度(SST)关系,得出近百年来研究海区的滨珊瑚生长率平均为11mm/a,变化于7~15mm/a之间,珊瑚生长率与SST呈显著正相关.据1961~1993年的资料统计,各个样品的相关系数在0.77~0.89之间,从而建立了珊瑚生长率温度计.由它后报1993~1961年间该海区的SST,误差为土0.12~±0.17℃.由后报得出近百年来南海北部热带海区的SST上升率为0.20℃/100a,明显高于中国气温的0.09℃/100a,但低于全球温度和西太平洋热带海区SST的上升率.  相似文献   

3.
宋超  盖增喜 《地球物理学报》2018,61(4):1225-1237
据中国地震台网测定,北京时间2015年4月15日15时39分,在内蒙古自治区阿拉善左旗(39.8°N,106.3°E)发生MS5.8地震,震源深度为10 km.地震发生后多家机构对其开展了研究,本文使用喜马拉雅Ⅱ期布设在南北地震带北段的台站观测数据,通过走时反演和波形拟合反演的迭代,获得了该地区地壳一维速度结构,接着利用直达P波观测与理论走时差对震中位置重定位,然后反演地震的最佳双力偶解以及震源深度,最终得到了区域速度结构、地震的三维坐标、发震时刻以及震源机制解.结果显示,此次地震发生于世界时2015年4月15日7时39分26.718s,震中(39.7663°N,106.4304°E),震源矩心深度18 km,矩震级MW5.25,节面Ⅰ走向176°,倾角85°,滑动角-180°,节面Ⅱ走向86°,倾角90°,滑动角-5°.结合该区域断裂带构造运动分析,本文认为此次地震是左旋走滑破裂,略带正断分量,断层面是节面Ⅱ,走向为NEE(近E-W)向,发震构造为震中附近的E-W向隐伏断裂.  相似文献   

4.
兵库县南部地震于1995年1月17日5时46分(JST;JST=GMT+9h)发生在兵库县南部的活动断层上,对几个城市尤其是神户造成了严重的破坏。我们通过对宽频带及强地面运动地震图的分析确定了本次地震的震源机制及大小(地震矩和震级)。由长周期矩心矩和量反演的震源机制是,走向、倾角、滑动角分别为233°,83°,169°,补偿线性偶极向量分量小(1.5%),M0=3.0×10^19Nm,Mw=6.9  相似文献   

5.
华南地块和印支地块相对运动的古地磁证据   总被引:3,自引:0,他引:3       下载免费PDF全文
印支地块中生代的古地极位置较华南地块的古地极位置经度偏西、纬度偏南。此现象系印度板块和欧亚板块碰撞后,先是印支地块绕喜马拉雅山系的东枢纽(阿萨姆枢纽)顺时针转动了8°,然后华南地块自西向东移动了大约20°。此解释与主走滑断层迁移模式基本吻合。古地磁数据还表明,虽然红河断裂近期活动为右旋性质,但在印度板块和欧亚板块碰撞初期,它曾是一条调节两板块相互作用的巨大的左旋走滑断层  相似文献   

6.
利用中等复杂程度热带大气和海洋模式研究了热带太平洋和大西洋SST通过风应力桥梁的相互作用.利用1958~1998年NCEP分析的海表面温度场(SST)强迫大气模式得到的表面风应力与NCEP分析的同期热通量共同驱动海洋模式,作为控制试验;和控制试验平行,但强迫大气模式的SST在某一海盆取为多年气候平均值的试验作为敏感性试验;比较控制试验与敏感性试验模拟,则可反映风应力桥梁作用下热带某海盆SST异常对其他海盆的影响.结果表明,热带某一海盆SST暖(冷)异常总是引起局地海盆表面西部西(东)风异常和东部东(西)风异常;热带太平洋SST暖(冷)异常导致的该海盆东部表面东(西)风异常可以扩展到热带大西洋,从而导致热带大西洋SST冷(暖)异常;热带大西洋SST暖(冷)异常导致的该海盆西部表面西(东)风异常可以扩展到热带太平洋,从而导致热带太平洋SST暖(冷)异常.  相似文献   

7.
塔里木盆地西南部同由路克剖面海相白垩系古地磁结果   总被引:1,自引:0,他引:1  
对塔里木盆地西南部阿克陶县同由路克剖面海相白垩系18个采点样品进行的古地磁和岩石磁学研究表明, 白垩系下统的携磁矿物以赤铁矿为主, 含磁铁矿; 上统地层以磁铁矿、钛磁铁矿和赤铁矿、针铁矿为组合特征. 逐步热退磁和主向量分析显示样品为单一磁组分或二磁组分, 高温稳定性组分具正、反极性, 并通过了极性检验、倒转检验和一致性检验. 白垩系下统平均磁化方向D = 27.0°, I = 42.0°, α95 = 6.5°; 磁极位置φ = 190.3°, λ = 63.1°, dp = 4.9°, dm = 8.0°; 白垩系上统平均磁化方向D = 29.1°, I = 39.4°, α95 = 11.2°; 磁极位置φ = 190.9°, λ = 60.3°, dp = 8.0°, dm = 13.4°. 塔西南早白垩世海相地层的磁倾角比塔里木北部陆相地层同时代的磁倾角高约10.0°±7.8°. 与塔西南早白垩世火山岩相比, 塔西南海相早白垩世红层磁倾角偏低了8.1°±8.9°. 虽然这些古地磁数据的置信区间较大, 海相白垩系古纬度仍趋向于陆相红层和火山岩相的古纬度之间.  相似文献   

8.
利用中国气象科学研究院气候系统模式CAMS-CSM中大气和陆面的耦合版本进行了土壤湿度和热带太平洋海温异常影响东亚夏季风的数值模拟,探讨了中国东部从长江中下游到华北(YRNC)春季土壤湿度和厄尔尼诺(El Ni?o)在影响夏季东亚环流和中国东部降水中的作用及其机理.结果表明,中国东部春季土壤湿度和El Ni?o海温异常均对东亚夏季风有显著的影响,其中土壤湿度对中国东部夏季降水的影响略大于海温的作用,然而两者对东亚夏季风环流和中国夏季降水的作用显著不同. YRNC土壤偏湿(干)引起的降水异常模态为中国北部和东南降水偏少(多),而长江流域和东北降水偏多(少),环流上YRNC土壤偏湿(干)能引起西太平洋副热带高压显著偏强(弱)偏西(东)和东亚大槽偏深(浅),表现为弱(强)夏季风形态. El Ni?o对降水的影响显著不同于土壤湿度的作用,在El Ni?o发展期的夏季,中国东北和华北地区为异常反气旋,长江中下游和华南地区为异常气旋,西太平洋副热带高压偏弱,引起长江下游、华南降水偏多,华北降水偏少.在El Ni?o衰减期的夏季,中国东北地区存在一个异常气旋,华南有一个异常反气旋,异常反气旋西部的偏南气流和异常气旋西部的偏北气流在中国中部和北部地区汇合,使得夏季华北和长江中游地区降水增多,其余地区降水偏少.  相似文献   

9.
2004年阳江MS4.9地震震源参数分析   总被引:5,自引:1,他引:4  
康英  杨选  吕金水  叶繁英 《地震》2005,25(3):109-114
利用广东数字地震台网的资料计算了2004年9月17日广东阳江Ms4.9地震的震源机制为:节面走向57°,倾角47°,滑动角69°,主压应力方向342°,倾角0°,主张应力方向252°,倾角75°,属逆断层性质;地震矩为1.69×1015N·m,应力降为1.7 MPa,震源半径为876 m.根据阳江地区震前22个ML>2.5的中小地震震源参数,得到一些经验关系.S波拐角频率随时间的变化显示出Ms4.9地震前有下降趋势;阳江序列P轴方位角的变化显示出震前4个月应力开始趋于一致.  相似文献   

10.
本文利用2006年6月至2014年6月COSMIC掩星观测的水汽廓线,分析了对流层/下平流层(TLS)比湿信号对ENSO的响应.在数据处理中,将COSMIC掩星水汽廓线计算得到的全球比湿数据内插为1000~30 hPa区间水平分辨率为5°×5°的三维格网,在各等压面上求取各格网点去除年/月际信号后的比湿月异常值.然后在对比湿月异常时间序列低通滤波的基础上,进行经验正交分解(EOF)得到比湿主成分,并对该主成分信号进行二项式平滑;接下来将平滑后的主成分信号与反映ENSO活动的ONI指数进行相关处理,得到各等压面主成分信号相对于ONI指数的相关系数及对应的时间延迟.论文分析了包括Niño-3.4的5个代表性区域的TLS比湿异常主成分信号,结果表明:在各区域,采用本文先低通滤波再EOF分解的处理方法获得的TLS比湿异常主成分信号与ONI指数均有很强相关性,对流层相关系数绝对值达0.8以上,低平流层高于0.7,在300~200 hPa的上对流层达到峰值;各等压面上比湿异常主成分信号相对于ONI指数的时间延迟不尽相同,在对流层中比湿异常主成分信号普遍滞后于ONI指数1~6个月;在各区域,比湿异常主成分与ONI指数相关系数绝对值达到最大的等压面都接近250 hPa,最大相关系数绝对值均达到0.9以上.进一步对全球250 hPa等压面比湿异常主成分与ONI指数相关性的分析表明:两者强相关的区域主要集中在热带;在这些强相关区域,比湿异常主成分相对于ONI主要表现为滞后,且相关系数越大,相应的时间延迟越短.  相似文献   

11.
Simulation outputs were used to contrast the distinct evolution patterns between two types of El Niño. The modeled isotherm depth anomalies closely matched satellite sea surface height anomalies. Results for the El Niño Modoki (central Pacific El Niño) corresponded well with previous studies which suggested that thermocline variations in the equatorial Pacific contain an east–west oscillation. The eastern Pacific El Niño experienced an additional north–south seesaw oscillation between approximately 15° N and 15° S. The wind stress curl pattern over the west-central Pacific was responsible for the unusual manifestation of the eastern Pacific El Niño. The reason why the 1982/1983 El Niño was followed by a normal state whereas a La Niña phase developed from the 1997/1998 El Niño is also discussed. In 1997/1998, the Intertropical Convergence Zone (ITCZ) retreated faster and easterly trade winds appeared immediately after the mature El Niño, cooling the sea surface temperature in the equatorial Pacific and generating the La Niña event. The slow retreat of the ITCZ in 1982/1983 terminated the warm event at a much slower rate and ultimately resulted in a normal phase.  相似文献   

12.
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.  相似文献   

13.
The El Niño-Southern Oscillation (ENSO) is characterized based on the date the events are mature. Their time lag defined relative to the central value of successive intervals of 4 years length, e.g. 01/1868–01/1872, 01/1872–01/1876 …, 01/1996–01/2000 … affects their evolution and, for a given amplitude, their variability. It specifies the dynamics of the quadrennial Quasi-Stationary Wave (QSW) in the tropical Pacific since ENSO always occurs at the end of the eastward phase propagation of that QSW. A third of events are unlagged with very low variability, SST anomalies being nearly concomitant between the extreme eastern and the central-eastern Pacific. A third of events are weakly lagged, in phase with the annual QSW, whose variability is much greater. Several months may elapse between the maximum SST anomalies east of the basin and along its equatorial central part. The last third of the events exhibits considerable variability, whether they are out of phase with the annual QSW or strongly lagged. The SST anomaly between 5°N and 20°N plays a key role in the maturation of the events out of phase. The events in phase (10% of the total population) are characterized by a negative SST anomaly in the central-eastern Pacific that reverses just before the maturation stage of ENSO. Sea water temperature 125 m deep in the central-eastern Pacific carries the earliest relevant information with a lead time of one year for forecasting the amplitude of unlagged ENSO while reporting how SST anomalies will develop until ENSO is fully developed. Besides, long-term forecast of the resumption of La Niña can be achieved accurately when weakly lagged events in phase with the annual QSW occur. The well differentiated typology of events vs. their time lag is the best clue to prove the leading role of the quadrennial QSW in the genesis of ENSO, while the related dynamic of the atmosphere ensues.  相似文献   

14.
Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China’s coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China’s coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China’s coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4–7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).  相似文献   

15.
Monthly precipitation data from meteorological stations in Nigeria are analysed from 1950 to 1992, in relation to sea surface temperatures (SSTs) in the tropical Pacific and Atlantic Oceans. The analyses have shed some light on understanding the variability of rainfall anomalies observed in Nigeria for this period. The correlation values between rainfall anomaly indices (RAI) and different meteorological indices are not all significant. Thus, the analyses show some indication that rainfall in Nigeria is associated with El Niño-related circulation and rainfall anomalies. The low correlations between RAI and SST in the Pacific confirm low correlations between rainfall and southern oscillation indices (SOI). SST correlations in the tropical Atlantic suggest that warm surface water in this part of the Atlantic moves the Inter Tropical Convergence Zone (ITCZ) southward and away from the SouthEast of Nigeria, indicating less rainfall, while, in SouthWest of Nigeria, the warm surface waters in this part of the Atlantic are likely to be responsible for a more northern position of the ITCZ, which produces more rainfall. The lower correlation in Northern Nigeria may be attributed to its continentality, away from the influence of the sea surface conditions in the Gulf of Guinea and the tropical Atlantic. The drought, or rainfall, cycles in Northern Nigeria are more closely connected to the land surface conditions in the nearby Sahel region.  相似文献   

16.
This paper investigates mechanisms controlling the mixed-layer salinity (MLS) in the tropical Pacific during 1990–2009. We use monthly 1°?×?1° gridded observations of salinity, horizontal current and fresh water flux, and a validated ocean general circulation model with no direct MLS relaxation in both its full resolution (0.25° and 5 days) and re-sampled as the observation time/space grid resolution. The present study shows that the mean spatial distribution of MLS results from a subtle balance between surface forcing (E???P, evaporation minus precipitation), horizontal advection (at low and high frequencies) and subsurface forcing (entrainment and mixing), all terms being of analogous importance. Large-scale seasonal MLS variability is found mainly in the Intertropical and South Pacific Convergence Zones due to changes in their meridional location (and related heavy P), in the North Equatorial Counter Currents, and partly in the subsurface forcing. Maximum interannual variability is found in the western Pacific warm pool and in both convergence zones, in relation to El Niño Southern Oscillation (ENSO) events. In the equatorial band, this later variability is due chiefly to the horizontal advection of low salinity waters from the western to the central-eastern basin during El Niño (and vice versa during La Niña), with contrasted evolution for the Eastern and Central Pacific ENSO types. Our findings reveal that all terms of the MLS equation, including high-frequency (<1 month) salinity advection, have to be considered to close the salinity budget, ruling out the use of MLS (or sea surface salinity) only to directly infer the mean, seasonal and/or interannual fresh water fluxes.  相似文献   

17.
The purpose of this paper is twofold. First, we demonstrate that the asymmetry between El Niño and La Niña events recorded in sea level variation occurs only during extreme episodes of El Niño/Southern Oscillation. Second, we explain that the asymmetry is controlled by certain regular cycles which have time-variable amplitudes. Gridded maps of sea level anomaly that form a spatial-temporal time series (spatial resolution: 1° × 1°, sampling interval: 1 week) spanning the time interval from 14/10/1993 to 18/04/2012 were used. We examined those time series and found that certain regular harmonic signals (periods: 365, 182, 120, 90 and 62 days) are dominant terms of their temporal variability. By subtracting those oscillations from sea level anomaly data, residuals were determined. Using skewness and kurtosis as measures of asymmetry and nonlinearity — after adopting 10-year moving window — we found that the extreme El Niño 1997/1998 has been a dominant driving force of the asymmetry and nonlinearity of El Niño/Southern Oscillation since the end of 1993. In order to detect residual signals that are responsible for the asymmetry, we applied the Fourier Transform Band Pass Filter and found that there are two important oscillations remaining in the residual sea level anomaly data, i.e. the annual and semiannual ones with time-varying amplitudes. We hypothesize that temporarily uneven amplitudes have meaningful impact on the aforementioned asymmetry.  相似文献   

18.
The 2015/16 El Nio developed from weak warm conditions in late 2014 and NINO3.4 reached 3℃ in November 2015. We describe the characteristics of the evolution of the 2015/16 El Nio using various data sets including SST, surface winds,outgoing longwave radiation and subsurface temperature from an ensemble operational ocean reanalyses, and place this event in the context of historical ENSO events since 1979. One salient feature about the 2015/16 El Nio was a large number of westerly wind bursts and downwelling oceanic Kelvin waves(DWKVs). Four DWKVs were observed in April-November 2015 that initiated and enhanced the eastern-central Pacific warming. Eastward zonal current anomalies associated with DWKVs advected the warm pool water eastward in spring/summer. An upwelling Kelvin wave(UWKV) emerged in early November 2015 leading to a rapid decline of the event. Another outstanding feature was that NINO4 reached a historical high(1.7℃), which was 1℃(0.8℃) higher than that of the 1982/83(1997/98) El Nio . Although NINO3 was comparable to that of the 1982/83 and 1997/98 El Nio , NINO1+2 was much weaker. Consistently, enhanced convection was displaced 20 degree westward, and the maximum D20 anomaly was about 1/3.1/2 of that in 1997 and 1982 near the west coast of South America.  相似文献   

19.
Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) problem for the 2015/16 strong El Nio event from the perspective of error growth. By analyzing the growth tendency of the prediction errors for ensemble forecast members, we conclude that the prediction errors for the 2015/16 El Nio event tended to show a distinct season-dependent evolution, with prominent growth in spring and/or the beginning of the summer. This finding indicates that the predictions for the 2015/16 El Nio occurred a significant SPB phenomenon. We show that the SPB occurred in the 2015/16 El Nio predictions did not arise because of the uncertainties in the initial conditions but because of model errors. As such, the mean of ensemble forecast members filtered the effect of model errors and weakened the effect of the SPB, ultimately reducing the prediction errors for the 2015/16 El Nio event. By investigating the model errors represented by the tendency errors for the SSTA component,we demonstrate the prominent features of the tendency errors that often cause an SPB for the 2015/16 El Nio event and explain why the 2015/16 El Nio was under-predicted by the ICM EPS. Moreover, we reveal the typical feature of the tendency errors that cause not only a significant SPB but also an aggressively large prediction error. The feature is that the tendency errors present a zonal dipolar pattern with the west poles of positive anomalies in the equatorial western Pacific and the east poles of negative anomalies in the equatorial eastern Pacific. This tendency error bears great similarities with that of the most sensitive nonlinear forcing singular vector(NFSV)-tendency errors reported by Duan et al. and demonstrates the existence of an NFSV tendency error in realistic predictions. For other strong El Nio events, such as those that occurred in 1982/83 and 1997/98, we obtain the tendency errors of the NFSV structure, which cause a significant SPB and yield a much larger prediction error. These results suggest that the forecast skill of the ICM EPS for strong El Nio events could be greatly enhanced by using the NFSV-like tendency error to correct the model.  相似文献   

20.
The relationship between El Niño Southern Oscillation (ENSO) and precipitation along the Peruvian Pacific coast is investigated over 1964–2011 on the basis of a variety of indices accounting for the different types of El Niño events and atmospheric and oceanographic manifestations of the interannual variability in the tropical Pacific. We show the existence of fluctuations in the ENSO/precipitation relationship at decadal timescales that are associated with the ENSO property changes over the recent decades. Several indices are considered in order to discriminate the influence of the two types of El Niño, namely, the eastern Pacific El Niño and the central Pacific El Niño, as well as the influence of large‐scale atmospheric variability associated to the Madden and Julian Oscillation, and of regional oceanic conditions. Three main periods are identified that correspond to the interleave periods between the main climatic transitions over 1964–2011, i.e. the shifts of the 1970s and the 2000s, over which ENSO experiences significant changes in its characteristics. We show that the relationship between ENSO and precipitation along the western coast of Peru has experienced significant decadal change. Whereas El Niño events before 2000 lead to increased precipitation, in the 2000s, ENSO is associated to drier conditions. This is due to the change in the main ENSO pattern after 2000 that is associated to cooler oceanic conditions off Peru during warm events (i.e. central Pacific El Niño). Our analysis also indicates that the two extreme El Niño events of 1982/1983 and 1997/1998 have overshadowed actual trends in the relationship between interannual variability in the tropical Pacific and precipitation along the coast of Peru. Overall, our study stresses on the complexity of the hydrological cycle on the western side of the Andes with regard to its relationship with the interannual to decadal variability in the tropical Pacific. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号